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Abstract: In molecular phylogenetics, standard models of sequence evolution generally assume that sequence 
composition remains constant over evolutionary time. However, this assumption is violated in many data-
sets which show substantial heterogeneity in sequence composition across taxa. We propose a model which 
allows compositional heterogeneity across branches, and formulate the model in a Bayesian framework. Spe-
cifically, the root and each branch of the tree is associated with its own composition vector whilst a global 
matrix of exchangeability parameters applies everywhere on the tree. We encourage borrowing of strength 
between branches by developing two possible priors for the composition vectors: one in which informa-
tion can be exchanged equally amongst all branches of the tree and another in which more information 
is exchanged between neighbouring branches than between distant branches. We also propose a Markov 
chain Monte Carlo (MCMC) algorithm for posterior inference which uses data augmentation of substitutional 
histories to yield a simple complete data likelihood function that factorises over branches and allows Gibbs 
updates for most parameters. Standard phylogenetic models are not informative about the root position. 
Therefore a significant advantage of the proposed model is that it allows inference about rooted trees. The 
position of the root is fundamental to the biological interpretation of trees, both for polarising trait evolu-
tion and for establishing the order of divergence among lineages. Furthermore, unlike some other related 
models from the literature, inference in the model we propose can be carried out through a simple MCMC 
scheme which does not require problematic dimension-changing moves. We investigate the performance of 
the model and priors in analyses of two alignments for which there is strong biological opinion about the tree 
topology and root position.
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1  Introduction
Standard phylogenetic models of sequence evolution assume that sequence composition (the proportion of 
A, G, C or T bases in DNA, or of the different amino acids in a protein) remains constant over evolutionary 
time, but this assumption is violated in many real datasets. For example, the GC-content of 16S ribosomal 
RNA (rRNA), the most widely used gene in phylogenetic analysis, varies from 45 to 74% across the diver-
sity of sampled Bacteria, Archaea and eukaryotes (Cox et al., 2008). Although the underlying causes of this 
variation in base composition are not fully understood, it is thought to be partially attributable to differing 
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mutational biases in DNA replication enzymes across the domains of life (Sueoka, 1988; Lind and Andersson, 
2008). A variety of selectionist hypotheses for compositional heterogeneity also provide possible explana-
tions; see, for example, Bernardi (2000) or Singer and Ames (1970).

Assumptions such as that of compositional homogeneity make statistical models simpler and inference 
more computationally tractable. However, they can also impact on inferences about the underlying phylog-
eny, an improved understanding of which is generally the objective of the analysis. When sequence composi-
tion is assumed to remain constant over evolutionary time, sequences with similar compositions are often 
found to cluster on the tree, irrespective of the true evolutionary relationships (Mooers and Holmes, 2000). 
A classic example of this phenomenon is the relationship between the 16S rRNA genes of Bacillus, Thermus 
and Deinococcus (Embley et al., 1993; Mooers and Holmes, 2000; Foster, 2004). Based on shared properties of 
the bacterial cell wall and phylogenetic analyses of protein-coding genes, the consensus amongst biologists 
is that the GC-rich thermophile Thermus is most closely related to the mesophile (GC-moderate) Deinococcus. 
However, analyses using standard phylogenetic models which assume compositional homogeneity over time 
generally group Thermus with the other GC-rich organisms in the analysis, and Deinococcus with other meso-
philes. We consider an analysis of this dataset in Section 4.

More controversially, it has also been argued that the canonical “three domains” tree of life (Woese et al., 
1990), in which the Bacteria, Archaea and eukaryotes each form monophyletic groups, is an incorrect infer-
ence resulting from a failure to account for compositional heterogeneity (Cox et al., 2008; Foster et al., 2009; 
Williams et al., 2012). While some analyses of universally conserved rRNA and protein-coding genes using 
standard models recover a three domains tree, recent analyses employing more complex models which allow 
compositional heterogeneity across sites or branches support an alternative “eocyte” tree in which the eukar-
yotes emerge from within a paraphyletic Archaea (Cox et al., 2008; Foster et al., 2009; Guy and Ettema, 2011; 
Williams et al., 2012); for a review of the background, see Williams et al. (2013). We consider an analysis of a 
tree of life dataset in Section 5.

A further limitation of standard phylogenetic models is that they are based on continuous-time Markov 
processes (CTMPs) which are stationary and time-reversible. This pair of assumptions makes the likelihood 
function invariant to changes in the root position. An inability to infer the root position from data is a serious 
limitation because many of the most interesting applications of phylogenies require rooted trees. In particu-
lar, knowledge of the root is necessary to polarise ancestor-descendant relationships and therefore to trace 
the evolution of biological traits along a phylogeny. Models which allow sequence composition to change 
over evolutionary time are not usually built on assumptions of stationarity and time-reversibility and so gen-
erally allow data to be informative about the root position.

Motivated by these inferential concerns and restrictions, models have been developed which allow 
sequence composition to vary across branches of the tree, that is, over time. Conditional on a fixed rooted 
topology, Jayawwal et al. (2011) consider fixed assignment models in which pre-specified groups of branches 
are assigned their own composition vector and possibly their own instantaneous rates of change between 
characters. Given a particular number G of groups of branches, each possible allocation of branches to groups 
is considered to be a different model. Working in a frequentist framework, the different models are then com-
pared using standard likelihood based model selection criteria, such as AIC, within a heuristic model search 
algorithm. Nesting all the fixed assignment models for a particular value of G into one model and introduc-
ing a stochastic vector which gives the probability of assigning a branch to each possible group leads to a 
mixture model. Under this more structured model representation, it is straightforward to incorporate topo-
logical uncertainty using standard tree search tools. The node-discrete-compositional-heterogeneity model 
(Foster, 2004) is a mixture model in which each group of branches has its own composition vector. Similarly, 
the BP model (Blanquart and Lartillot, 2006) partitions the tree into regions with region-specific composition 
vectors. In this case, the locations of the breaks between regions are determined by a Poisson process which 
is independent of the sequence substitution process. As such the break-points need not coincide with specia-
tion events. Unfortunately, it is generally difficult to fit these mixture-based models in a Bayesian framework 
using Markov chain Monte Carlo (MCMC) methods. This is due to the dimension-changing-moves which are 
required to learn about the number of mixture components but which typically impair the convergence and 

Brought to you by | INIST - CNRS
Authenticated

Download Date | 11/6/18 2:20 PM



S.E. Heaps et al.: Bayesian modelling of compositional heterogeneity in molecular phylogenetics      591

mixing of MCMC chains. In this paper, we develop a model of fixed dimension which can be fitted using a 
much more straightforward MCMC algorithm. This is achieved by extending the standard model to allow 
step-changes in the stationary distribution at speciation events. A similar model was considered by Yang 
and Roberts (1995) but they did not impose a joint distribution, such as a random effects structure, over the 
branch composition vectors. By introducing this feature, inference benefits from borrowing strength across 
branches on the tree. We take a Bayesian approach to inference and allow information to be shared between 
branches by using a prior in which the branch compositions are positively correlated. We propose two such 
priors. In the first, information can be exchanged equally amongst all branches of the tree because we take 
the composition vectors to be equi-correlated. In the second, an autoregressive structure is assumed which 
allows the composition vectors to evolve from branch to branch down the tree. Consequently more informa-
tion is exchanged between neighbouring than distant branches. In order to increase the efficiency of infer-
ence via MCMC, we propose a data augmentation algorithm which samples complete substitutional histories 
as well as model parameters. This allows direct Gibbs sampling steps for most unknowns and a factorisation 
of the likelihood over branches.

The remainder of this paper is structured as follows. Section 2 begins by reviewing a standard phyloge-
netic model for sequence evolution. This is then used as a basis for developing our branch heterogeneous 
model. The section concludes with a description of the prior. In Section 3 we outline the MCMC scheme 
for generating samples from the joint posterior distribution of all unknowns, including the underlying phy-
logeny. Finally, Section 4 provides an illustrative application to the Thermus/Deinococcus dataset discussed 
earlier, whilst Section 5 provides a more substantive application to investigate the relationships between the 
three domains of life.

2  Model and prior
Let y = (yij) denote an alignment of molecular sequence data in which yij∈ΩK is the character at the jth site for 
species i and ΩK is an alphabet with K characters, for example, the DNA alphabet is Ω4 = {A, G, C, T}. Denote 
the number of sites (columns) by M and the number of species (rows) by N. In this section we begin by 
explaining the standard phylogenetic model for sequence evolution. We then build upon this basic set-up to 
describe our model which allows sequence composition to vary across the tree. Finally, we outline our prior 
distribution, including two structurally different joint distributions for the composition vectors conditional 
on the topology.

2.1  Standard phylogenetic model

Consider a single site Y(t)∈ΩK evolving over time t on one edge of the underlying tree. Most phylogenetic 
models assume that substitutions can be modelled using CTMPs with transition matrix P(t) = {pij(t)} whose 
(i, j) th entries are defined by

( ) Pr( ( ) | (0) )ijp t Y t j Y i= = =

for i, j = 1, …, K in which the notation “|” denotes conditioning on the succeeding random variable(s). Under 
mild regularity conditions, the transition matrix can be represented equivalently through an instantaneous 
rate matrix Q according to the matrix equation P(t) = exp(μtQ). Here μ is the overall rate of evolution which 
can vary from branch to branch.

Standard models assume that the CTMP on any particular edge of the tree is time-reversible and in 
its stationary distribution 1( , , )K Kπ π= … ∈π S  where 1{( , , ): 0 , 1}K K i ix x x i x= … ≥ ∀ =∑S  denotes the 
K-dimensional simplex. Under the assumption of reversibility, the transition matrix for the forward and 
reverse processes are the same, and we can decompose the rate matrix as Q = Rdiag(πT)–diag(RπT) where 
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R = (ρij) are termed exchangeability parameters, with ρij = ρji. The ρij can be interpreted as the instantaneous 
rates of change between the different characters. The rate matrix therefore has non-diagonal entries qij = ρijπj 
for all i≠j, with diagonal entries qii = –Σj≠iqij which ensure the rows sum to zero. The substitution model with 
this saturated rate matrix of K(K–1)/2 distinct exchangeabilities is called the general time-reversible (GTR) 
model. Other commonly used substitution models are special cases. For example, when working with DNA 
data, the HKY85 model is a special case where ρGA = ρAG = ρCT = ρTC = ρ and all other ρij are equal to β. Although this 
simplification reduces the number of exchangeabilities from six to two, it still allows transitions (substitu-
tions between pyrimidines or between purines) and transversions (substitutions between a pyrimidine and 
a purine) to occur at different rates, here ρ and β, respectively. We make use of the HKY85 exchangeability 
matrix in the applications in Sections 4 and 5.

In standard phylogenetic models, a transition matrix of the same form applies to every edge of the tree. 
This matrix can either be specified as P(t) = exp(μtQ) or P(t) = exp(μ′t′Q′) in which Q′ = Q/c and c = –Σiqiiπi. In the 
latter case the average rate of substitution for the normalised rate matrix Q′ is equal to one. The branch length 
parameter ℓ = μt or ℓ′ = μ′t, respectively, is estimated as a product. The latter parameterisation, referred to here-
after as the interpretation-parameterisation, can be useful for prior elicitation because the branch length ℓ′ is 
often interpreted as the expected number of substitutions per site. The former data-augmentation-parame-
terisation is useful for inference via MCMC because it facilitates direct Gibbs sampling of the exchangeability 
parameters within a data augmentation framework; see, for example, Lartillot (2006), Rodrigue et al. (2008). 
Unless stated otherwise, the data-augmentation-parameterisation is used in the remainder of this paper.

Finally, to ensure parameter identifiability, a constraint is necessary to prevent arbitrary rescaling of the 
branch lengths and the exchangeability parameters in R. In this paper we choose to fix one exchangeability 
parameter to be equal to one, for example, ρ12 = ρ21 = 1 in the GTR model, or β = 1 in the HKY85 model. Note that 
in the latter case, the single non-fixed exchangeability ρ = ρ/β can be interpreted as the transition-transver-
sion rate ratio.

The preceding description outlines the data generating mechanism for a single site. To extend this to 
the whole alignment, sites are generally assumed to be independent of each other, but not exchangeable. 
Instead, each site is allowed to evolve at its own rate ri which acts as a multiplicative random effect and scales 
the rate matrix Q so that Pi(ℓ) = exp(ℓriQ) with ri|α∼Ga(α,α) for sites i = 1, …, M. This allows heterogeneity in the 
extent to which different sites are conserved.

2.2  Modelling across-branch compositional heterogeneity

Section 1 outlined the motivation for developing models which allow sequence composition to vary over 
evolutionary time. We achieve this by extending the standard model as follows. Consider a bifurcating rooted 
tree on N taxa containing B = 2N–2 branches. Associate a composition vector 0 K∈π S  with the root of the 
tree and composition vectors j K∈π S  with each branch j = 1, …, B. We assume that the same exchangeability 
matrix R applies everywhere on the tree and so the instantaneous rates of change between the different char-
acters are assumed to remain constant over time. Intuitively, if the process is assumed to reach its stationary 
distribution on every branch of the tree, the model is a piecewise stationary CTMP, with step-changes in the 
stationary distribution at speciation events.

2.3  Prior distribution

Our prior distribution needs to describe our initial uncertainty about all unknowns in the model. These 
unknowns are the rooted tree topology τ, the branch lengths {ℓj}, the site-specific evolution rates {ri}, the 
exchangeability parameters R and the branch-specific compositions {πj}. We take a prior largely formed by 
making these sets of parameters independent, except that the prior for the composition vectors is allowed to 
depend on the topology.
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In order to express prior indifference with respect to topology, we adopt a prior for τ which is uniform on 
,NT  the set of rooted bifurcating tree topologies on N species. For the branch lengths, we take these to be 

independent, with ℓj∼Ga(a
ℓ
, b

ℓ
). The hyperparameters a

ℓ
 and b

ℓ
 can be chosen by first selecting a mean and 

variance for the branch lengths j j jc=′� �  under the interpretation-parameterisation, where cj = ΣiΣk≠i ρikπjkπji. 
Given the prior for the composition vector πj and the exchangeabilities ρij, the implied moments for the ℓj can 
then be estimated using first order Taylor approximations of the mean and variance of ℓj.

We describe the heterogeneity in site-specific rates by using the standard hierarchical gamma prior in 
which the rates are conditionally independent, with ri|α∼Ga(α,α) and α∼Ga(a

α
, b

α
). Note that here we use a 

continuous gamma distribution and not the commonly used discrete gamma approximation (Yang, 1994). 
We take independent gamma distributions for the distinct and non-fixed exchangeability parameters in R so 
that, for example, in the GTR model we have ρij∼Ga(a

ρ
, b

ρ
), j = 1, …, i–1, i = 3, …, K. When data augmentation of 

the substitutional histories is employed during MCMC (see Section 3), the priors for the branch lengths, site 
rates and exchangeability parameters are conjugate to the complete data likelihood function.

In Bayesian inference, borrowing strength refers to the process by which information from similar sources 
is pooled by specifying a prior in which the parameters relating to these sources are correlated; see, for 
example, Morris and Normand (1992). The prior distribution for the composition vectors enables us to influ-
ence the manner and extent to which strength can be borrowed between branches. We consider two plausible 
but different sets of prior beliefs: an exchangeable hierarchical Dirichlet prior (Prior A) and a prior with first 
order Markov dependence on ancestral composition (Prior B). In each case we assume prior beliefs about 
the K components of each composition vector are exchangeable, which is appropriate for most phylogenetic 
analyses.

Under Prior A the joint distribution of the composition vectors does not depend on the topology. We allow 
for borrowing of strength by introducing an unknown mean composition μ

π
 and then making the branch 

compositions conditionally independent given this mean composition. Specifically we take

 
~ ( ) and | ( ), 0, , K K j Ka b j B

π π π π π
= …1µ π µ µD ~D

 (1)

where 1K is a K-vector of 1s and a
π
, b

π
∈ℝ+ are fixed. More generally we could make b

π
 unknown and assign it 

a distribution on ℝ+. Although this would enable the data to influence the degree of borrowing of strength 
between branches, our experience suggests that this is at the cost of poor mixing during MCMC unless a very 
concentrated prior is chosen. Under Prior A, the correlation between all composition vectors is the same and 
this is appropriate if beliefs are that the compositions on different branches are exchangeable. However, the 
following prior would be more appropriate if beliefs were that the composition on a branch was more strongly 
related to the composition of its more recent ancestors.

In Prior B we model compositional dependence on recent ancestors by taking a first order Markov struc-
ture, with

0 0 ( )
1

( , , | ) ( | ) ( | , ),
B

B j a j
j

p p pτ τ τ
=

… = ∏π π π π π

where a(j) is the index of the branch (or root) which is ancestral to branch j. This prior depends on the topol-
ogy through its implied ancestor/descendant relationships. In order to construct a prior distribution with this 
structure and which is exchangeable over the components of the composition vector, it is convenient to work 
with a multinomial logit reparameterisation in which, for branch j

1

, =1, , ,
jk

jmjk K

m

e k K
e

α

α
π

=

=
∑

…

where αjk∈ℝ for k = 1, …, K and 
1

0.K

jkk
α

=
=∑  Clearly constructing an exchangeable prior for the elements of 

πj = (πj1, …, πjK) is achieved by imposing an exchangeable prior for the elements of αj = (αj1, …, αjK)T. Unfortu-
nately, constructing an exchangeable prior for αj is also difficult due to the constrained nature of its space 
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and so we introduce new parameters βj = (βj1, …, βj,K–1)T∈ℝK–1 through the linear mapping αj = Hβj in which H is 
a K × (K–1) matrix with (j, k)th entry

0, if
if ,

/( ) if
jk k

k

j k
h d j k

d K k j k

 <
= =
− − >

for j = 1, …, K, k = 1, …, K–1. Here d1 = 1 and 2
1= 1 1/( 1)k kd d K k− − − +  for k = 2, …, K–1. It is now straightforward to 

define a prior for the βj with the required first order Markov structure. We take independent stationary AR(1) 
processes for each of the collections (β0k, …, βBk), k = 1, …, K–1, so that

1

0 0 ( ),
1 1

( , , | ) ( | ) ( | , ) ,
K B

B k jk a j k
k j

p p pτ β τ β β τ
−

= =

  … =  
  

∏ ∏β β

where
2

0 ( ), ( ),| ~N( 0, / (1 ) ) and | , ~N( , )k jk a j k a j kb a a b
β β β β

β τ β β τ β−

in which a
β
∈[0,1] and b

β
∈ℝ+ are fixed hyperparameters. We now have a prior distribution for βj which is 

exchangeable over its elements. Further, given the topology τ, βj1, …, βj,K–1 have zero prior mean and are uncor-
related with variance 2/ (1 ).b a

β β
−  This together with the choice of H matrix above induces an exchangeable 

prior on the elements of αj and hence on those of πj.
The imposition of exchangeability across components k in each prior results in equal marginal expecta-

tions for the πjk, with E(πjk|τ) = 1/K for k = 1, …, K and j = 0, …, B. The marginal variances and correlations are 
governed by the choice of hyperparameters (a

π
, b

π
) in Prior A or (a

β
, b

β
) in Prior B. One way to choose these 

hyperparameters is to consider two summaries (e.g., lower and upper quartiles) of the empirical distribution 
of the proportion of one representative character in a reference dataset of molecular sequences. This refer-
ence dataset should include relevant sequence data that are expected to have a similar empirical distribu-
tion to that of the alignment under analysis. A method of trial-and-improvement can be invoked, iteratively 
adjusting the hyperparameters and simulating from the prior predictive distributions of the chosen summa-
ries, until there is reasonable agreement between the values of the summaries for the reference dataset and 
their prior predictive distributions. For example, suppose that we are interested in specifying the hyperpa-
rameters in Prior A for an analysis involving a DNA aligment with 36 taxa and suppose that we have already 
chosen the hyperparameters in the priors for all other parameters. On the basis of a reference dataset (or 
other information), suppose that we believe the lower and upper quartiles in the empirical distribution of the 
relative frequencies of base A (or, by exchangeability, any other base) across the 36 taxa should be about 0.23 
and 0.27, respectively. We can fix values for (a

π
, b

π
) in Prior A and then sample 36-taxa alignments from the 

prior predictive distribution. For each sampled alignment we can compute the lower and upper quartiles in 
the relative frequencies of A bases. If the prior predictive means for these quantities are close to 0.23 and 0.27, 
then we have found a reasonable choice for (a

π
, b

π
). If not, we try a different set of values and repeat.

A common concern amongst phylogeneticists when fitting complex models is the issue of overparam-
eterisation. Other models have been suggested which allow across-branch compositional heterogeneity (e.g., 
Foster, 2004; Blanquart and Lartillot, 2006), but these can suffer from having to use problematic dimension-
changing moves during MCMC. In contrast, we use a fixed dimension model. Although this leads to a larger 
number of parameters, this is not a problem in our hierarchical model because the prior for the composi-
tion vectors allows strength to be borrowed between branches. This offers a compromise between the two 
extremes of naively assuming independence (Cor(πik, πjk) = 0) and the inflexibility of assuming a common 
composition vector (Cor(πik, πjk) = 1). The advantage of our highly parameterised model over a simple model 
which assumes a common composition vector is borne out through the example in Section 4 in which the 
Bayes Factor in favour of our model is overwhelming. This can be taken to imply better fit of our prior-model 
combination, after allowing for the increased model complexity.
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3  Posterior inference via MCMC
Typically MCMC inference for phylogenetic problems uses a Metropolis Hastings algorithm due to the intrac-
tability of the full conditional distributions (FCDs) of the model parameters. However, it is also possible to 
employ a Metropolis-within-Gibbs sampler through a data augmentation approach (Tanner and Wong, 1987) 
in which the substitutional histories (the times and nature of all substitutions) are regarded as missing data 
and augmented to the state space of the sampler. Although this comes at the cost of a potentially time-consum-
ing data augmentation step, the advantage is that the complete data likelihood then factorises over branches 
whereas the observed data likelihood does not. This factorisation can lead to a considerable speedup in the 
likelihood calculations when there are many branch-specific parameters. We have found that using data aug-
mentation can lead to useful efficiency gains over the standard Metropolis Hastings sampler.

Let us characterise the substitutional history on a branch of length ℓj at site i by the number nij of sub-
stitutions, the states 1 , , ijn

ij ijz z…  resulting from these substitutions and the positions on the branch at which 
the substitutions occurred 1 , , ,ijn

ij ijt t…  with 10 .ijn
ij ij jt t< < < <� �  Let n denote the collection of nij across all M 

sites and B branches. Similarly let z and t denote the collections of k
ijz  and .k

ijt  Also let z0 = (zi0), where zi0∈ΩK 
denotes the state at the root for site i. Finally, let θ be the collection of all continuous unknowns from the 
model and the mixing parameters in the hierarchical priors. For example, if we use the GTR exchangeability 
matrix and Prior A then θ = ({ℓj}, {ri}, {ρij}, {πj}, α, μ

π
).

3.1  Posterior inference when the rooted topology is known

We first consider inference when the rooted tree topology τ is known. In this case the joint posterior of interest 
is π(θ, n, z, z0, t|y, τ) and we generate samples from this posterior by using a Metropolis-within-Gibbs scheme 
which iterates between the following two steps:
1. Sample the substitutional histories (n, z, z0, t) from their full conditional posterior π(n, z, z0, t|y, θ, τ). 

This distribution can be sampled exactly in a two part Gibbs step. First the molecular sequences yint at the 
internal nodes of the tree are drawn marginally of the substitutional histories from the conditional poste-
rior π(yint|y, θ, τ) using a forward-backward algorithm. Then the substitutional histories are sampled from 
the conditional posterior π(n, z, z0, t|y, yint, θ, τ), which includes the molecular sequences at all nodes 
on the tree. Note that the joint distribution of this move does not feature the molecular sequences yint at 
the internal nodes of the tree as yint and the substitutional histories are deterministically related. This 
second step can be carried out exactly by sampling a uniformized version of the CTMP in which the rate 
of leaving state k∈ΩK does not depend on k. The trick with this new representation is to allow fictitious 
transitions from a state to itself, leaving a Poisson process of Markov substitution events. After discarding 
the self-transitions, we are left with a sample from the exact conditional posterior of the substitutional 
histories. Full details of this algorithm can be found in Section 2.2 of Rodrigue et al. (2008).

2. Sample the parameters θ from their full conditional posterior π(θ|y, n, z, z0, t, τ)≡π(θ|n, z, z0, t, τ). This 
stage is broken down further into a series of Gibbs (or Metropolis-within-Gibbs) steps as follows.

The full conditional posterior distribution for the parameters θ is determined in the following way. A general 
CTMP with instantaneous rate matrix Q can be thought of as a stochastic process in which the time spent in 
state k before making a transition into a different state is exponentially distributed with rate νk = –qkk and, when 
the process leaves state k, it enters a different state l≠k with probability Pkl = qkl/νk. The CTMP for site i on branch 
j has instantaneous rate matrix riQj = (riqj,lm) and so conditional on the starting state zi0 (denoting 0

ijz =zi0 for any j), 
the joint distribution of the substitutional history for site i on branch j is given by

1 1 1

11 1 0 1
, , , , ,1

( , , , , , , | , , ) exp{ ( )} exp{ ( )}
ij

ij ij ij ij
k k k k nij
ij ij ij ij ij

n
n n n nk k

ij ij ij ij ij ij ij ij ij ijij z ij z ij z z ij zk
p n t t z z z t t P t tτ ν ν ν− − −

+−

=

 
… … = − − − − 

  
∏θ
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where νijk = –riqj,kk = riΣl≠k ρkl πjl for all k∈ΩK, Pijkl = riqj,kl/νijk = ri ρkl πjl/νijk for all k, l∈ΩK with k≠l, and we define 0 0ijt =  
and 1 .ijn

ij jt + =�  At this stage it is useful to introduce the change of variables / ,k k
ij ij js t= �  k = 0, …, nij+1, for every 

site i = 1, …, M and every branch j = 1, …, B. Combining such terms over all branches, the root and all sites, gives 
the complete data likelihood as
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(3)

The FCDs for the model parameters can now be deduced from (2) and the prior. The distributions for the 
exchangeability parameters, the site rates and the branch lengths are standard and can be sampled directly. 
The FCDs for the mixing parameters in the hierarchical priors (α for the site rates and μ

π
 for the branch com-

positions in Prior A) and for the composition vectors {πj} are non-standard and so we sample these by using 
Metropolis Hastings steps. Full details are given in Appendix A.

3.2  Posterior inference when the rooted topology is unknown

Samples from the full joint posterior π(τ, θ, n, z, z0, t|y) can be generated by supplementing the scheme 
described in Section 3.1 with Metropolis Hastings steps which change the rooted topology τ. This is achieved 
via three proposals: (i) a proposal which performs a local change on the topology called nearest neighbour 
interchange (NNI); (ii) a proposal for more large scale topological changes called subtree prune and regraft 
(SPR); and (iii) a proposal for changing the root position which otherwise leaves the topology unchanged. 
The first two are very similar to topology-changing proposals used in existing MCMC algorithms for infer-
ence under the standard phylogenetic model (Ronquist and Huelsenbeck, 2003). However, under the branch 
heterogeneous model described here, these proposals additionally involve modifications to the composition 
vectors associated with branches affected by changing tree topology. The proposals also involve the substitu-
tional histories (n, z, z0, t) as we are using data augmentation. It is convenient to use proposals which change 
the topology and model parameters and then, conditional on these proposals, propose substitutional his-
tories from their FCD. In other words we take proposals of the form * * * * * * * *

0( , | , ) ( , , , | , , ).q yτ τ π τθ θ θn z z t  
Such proposals have an acceptance probability of the form min(1, A), where

* * * * * *

* *

( , ) ( | , ) ( , | , )
( , ) ( | , ) ( , | , )

p y q
A

p y q
π τ τ τ τ

π τ τ τ τ
=

θ θ θ θ

θ θ θ θ

and p(y|θ, τ) is the observed data likelihood. This likelihood can be computed efficiently using a forward 
recursion called Felsenstein’s pruning algorithm (Felsenstein, 1973). Note that a benefit of using this form of 
proposal is that, as its acceptance probability does not depend on the substitutional histories, they need only 
be sampled if the proposal is accepted.

3.2.1  Nearest neighbour interchange (NNI) proposal

NNI is a topological operation on trees which works as follows. For any branch e on a rooted (binary) tree τ, let 
A and B denote the two subtrees descending from the branch. Similarly, two subtrees descend from the vertex 
of e closest to the root: the subtree (A, B) and a second subtree denoted C. Under NNI, the subtree ((A, B), C) 

Brought to you by | INIST - CNRS
Authenticated

Download Date | 11/6/18 2:20 PM



S.E. Heaps et al.: Bayesian modelling of compositional heterogeneity in molecular phylogenetics      597

in τ is replaced with one of the two alternatives ((B, C), A) or ((C, A), B). Branch e is effectively removed from 
τ and replaced with an alternative branch which determines a different relationship between the subtrees A, 
B and C.

The NNI proposal mechanism selects a branch e uniformly at random from the set of internal edges of τ, 
ruling out the two edges adjacent to the root. A new rooted tree topology τ* is selected from the two alternatives 
obtained by NNI of branch e, each with probability 1/2. This process eliminates e from τ and replaces it with an 
alternative e* in τ*. The length *e

�  and composition vector *e
π  for the new branch are proposed via log normal 

and Dirichlet random walks respectively, centred on the corresponding values for e in τ. All other branch 
lengths and compositions are maintained. Appendix A provides details of a Dirichlet random walk proposal.

The acceptance probability for this proposal is the product of the observed data likelihood ratio, the prior 
ratio and the proposal ratio. Due to the simple uniform prior on topology and the various assumptions of 
conditional independence made when specifying the joint prior, the prior ratio can be greatly simplified. For 
example, under Prior A it only depends on * *( , , , , ).e e e e π

� �π π µ  Every tree topology has the same number of 
neighbouring topologies obtained by a single NNI operation (Allen and Steel, 2001). It follows that the pro-
posal ratio does not depend on τ and τ*, but only on the values * *( , , , ).e e e e

� �π π  A new substitution history 
(n, z, z0, t) is generated only if the proposed parameters * *

*( , , )
e e

τ � π  are accepted.

3.2.2  Subtree prune and regraft (SPR) proposal

The SPR topological operation involves pruning off a subtree and grafting it back in an alternative position 
on the main body of the tree. Defining the sink and source of an edge e as the vertices on e furthest from and 
closest to the root, respectively, we can describe the SPR operation as follows. Suppose ep is a branch on a 
rooted (binary) tree τ which is not adjacent to the root and let eg denote an edge which is not adjacent to ep. If 
eg is a descendant of ep, define vp as the sink of ep and let τep

 denote the subtree ascending from ep including 
the branch ep itself. Conversely, if eg is not a descendant of ep, define vp as the source of ep and let τep

 denote the 
subtree descending from ep including the branch ep itself. In either case, since τ is binary, vp is contained in 
two other branches, denoted ea and eb. The subtree τep

 is detached from τ by disconnecting ep from vp, and then 
grafted back on by introducing a degree two vertex vg somewhere on eg and attaching vg to ep, which we relabel 
as * .pe  This divides eg into two edges *

ae  and * .be  The procedure leaves the edges ea and eb connected by a 
degree two vertex; the two edges are merged to form a new edge denoted 

*
ge  so that the resultant tree is binary.

The SPR proposal mechanism has the following form. The prune branch ep is selected uniformly at 
random from τ, excluding the two branches adjacent to the root, and the graft branch eg is then selected uni-
formly from the set of branches excluding ep and its adjacent branches (because an SPR involving adjacent 
edges does not change the underlying topology). The lengths of the branches *

ae  and *
be  are generated sto-

chastically subject to the constraint * *
ga b

ee e
+ =� � �  and we set *

pp
ee

=� �  and * .
a bg

e ee
= +� � �  The constraints arise 

as the lengths of the two branches *
ae  and *

be  formed by subdividing eg sum to ℓeg
 and the branch *

ge  formed 
by merging ea and eb has length ℓea

+ℓeb
. The lengths of all other branches remain unchanged. Modifications 

are also made to some of the branch compositions. Specifically, for x∈{g, a, b, p}, the compositions *
xe

π  are 
sampled using Dirichlet random walks with those for x∈{g, p} centred on πex

 and those for x∈{a, b} centred 
on a composition vector from this set of four vectors as appropriate. Full details on the computation of the 
acceptance probability for the proposal can be found in Appendix B. Note that, as for NNI moves, a new sub-
stitution history (n, z, z0, t) is generated only if the proposed parameters (τ*, θ*) are accepted.

3.2.3  Proposal for moving the root

This proposal is very similar to the SPR proposal, and we use some of the same notation. Suppose the two 
branches containing the root are ea and eb. A new rooted tree topology τ* is proposed by selecting a branch 
eg uniformly at random from the branches of τ, excluding ea and eb (since re-rooting on those branches does 
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not correspond to a change of root position). The new root position is formed by inserting a new degree two 
vertex somewhere on eg, thereby replacing eg with two new branches *

ae  and * .be  The branches ea and eb are 
then merged to give a single branch * .ge  Branch lengths and compositions for * ,ae  *

be  and *
ge  and a new root 

composition *
0π  are proposed in exactly the same way as in the SPR proposal, and the acceptance probability 

is calculated in the same way as the SPR move, after replacing πep
 and *

pe
π with π0 and *

0 .π

4  Thermus/Deinococcus application
To illustrate the model and inferential procedures we consider an application to the classic Thermus/Deino-
coccus dataset discussed in Section 1. This alignment of bacterial 16S rRNA genes contains M = 1273 sites and 
N = 5 taxa. It has alphabet Ω4 = {A, G, C, U }. Figure 1(A) illustrates the topology most commonly inferred when 
standard models are applied to this dataset. Figure 1(B) indicates the unrooted topology which biologists 
believe to be correct.

In this section we fit both the standard model from Section 2.1 and the heterogeneous model from Section 
2.2 and compare the inferred topologies. Unless stated otherwise, we used the MCMC algorithm described 
in Section 3 (or an appropriate modification for the homogeneous model) to generate 10M draws from the 
posterior, after a burn-in period of 100K samples, thinning the output to retain every 100th iterate. In each 
case, we diagnosed convergence of the MCMC sampler by running two chains, initialised at different starting 
points, and comparing trace and density plots for the parameters θ. Mixing in tree space is often problematic 
in phylogenetic analyses because acceptance rates for topological moves are typically very low. This problem 
is magnified when using the model allowing compositional heterogeneity because topological moves must 
propose new composition vectors, as well as new branch lengths, which are consistent with the new topol-
ogy. To assess whether the chains mixed well in tree space, we carried out diagnostic checks similar to those 
performed by the AWTY programme (Nylander et al., 2008), modified to account for the rooted nature of the 
sampled trees. For example, we considered the cumulative relative frequencies of all sampled clades over the 
course of each run. If both chains have converged and are mixing well, we would expect the plots of these 
relative frequencies to level out, approaching the same fixed values in each case, namely the exact posterior 
clade probabilities.

These graphical diagnostic checks gave no evidence of any lack of convergence. For example, a selection 
of plots are displayed in Figure 2 for the branch heterogeneous model under Prior B. Figures 2A–2B shows 

Thermus

Thermotoga
Aquifex

Bacillus

Deinococcus

0.1

A B

Posterior prob.
p̂top 0.7706 (0.0055)
p̂pp 0.7733 (0.0335)

Thermus

Thermotoga
Aquifex

Bacillus

Deinococcus

0.1

(b)
Posterior prob.

p̂top 0.2294 (0.0055)
p̂pp 0.2267 (0.0335)

Figure 1 (A) The commonly recovered, but incorrect, unrooted topology; (B) the correct unrooted topology. Shown below the 
trees are their posterior probabilities from the homogeneous analysis, calculated using the MCMC run with topological moves 

top
ˆ( )p  and the power posterior method pp

ˆ( ).p  Terms in parentheses are Monte Carlo standard errors. Branch lengths, trans-
formed to the interpretation-parameterisation, are posterior means from the homogeneous analysis.
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trace plots for the observed data likelihood and the parameter in θ which displayed the worst mixing, namely 
the shape parameter α in the model for across site rate heterogeneity. In both cases the traces from the two 
chains overlap completely. Figures 2C–2D show autocorrelation plots for these quantities from one of the 
chains. Even though α was the worst mixing parameter, the (thinned) output shows relatively little autocor-
relation, with an effective sample size of 71,245 compared to an actual sample size of 100K. This demonstrates 
very good mixing for the parameters in θ.

Figure 2E shows the cumulative relative clade frequencies over the course of the MCMC run for one of the 
chains. The equivalent graphic for the other chain was barely distinguishable and the relative frequencies 
converged towards the same value. This is exemplified by Figure 2F which plots the approximations to the 
posterior clade probabilities from one chain against the other. Note that the plots for the branch homogene-
ous model and the branch heterogeneous model under Prior A showed the same behaviour.

To provide a further assessment of convergence, we additionally computed the posterior distribution 
for the topologies π(τ|y) by approximating the marginal likelihood for each tree topology using the power 
posterior method (Friel and Pettitt, 2008), also known as thermodynamic integration in the phylogenetic 
literature (Lartillot and Philippe, 2006). This technique constructs a sequence of so-called power posteriors 
between the prior and posterior densities. The power posteriors, labelled by an index t∈[0,1], are proportional 
to the product of the likelihood raised to the power t and the prior. The marginal likelihood can be expressed 
as an integral over t∈[0,1] of the expectation of the log likelihood with respect to the power posterior at 
temperature t. It can be approximated by discretising the interval [0,1] as 0 = t0 < t1 < …tn–1 < tn = 1, estimating the 
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Figure 2 Illustrative graphical diagnostics for the branch heterogeneous model under Prior B. Top row: trace plots for (A) the 
observed data likelihood p(y|θ, τ) and (B) α from the two chains. Middle row: autocorrelation plots for (C) the observed data 
likelihood p(y|θ, τ) and (D) α from one of the chains. Bottom row: (E) cumulative relative clade frequencies for all the sampled 
clades from one of the chains, with different colours representing different clades; (F) scatter plot showing the agreement 
between the posterior clade probabilities approximated by the two chains.
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expected log-likelihood at each ti using an appropriate MCMC sample, and then combining these expected 
log-likelihoods through numerical quadrature. Note that at each temperature ti, we used a Metropolis Hast-
ings scheme without data augmentation to sample the power posterior. This is because the posterior support 
of the substitutional histories is a proper subset of the prior support due to the a posteriori requirement for 

ijn
ijz  to equal the observed character on external branches. In such cases, the power posterior method requires 

a correction term (Heaps et al., 2014). However calculation of these terms was not found to be computation-
ally feasible, and so we used schemes without data augmentation to compute the marginal likelihood. For the 
discretisation, we used a geometric spacing of temperatures ti = (i/n)4 for i = 0, …, n where n = 40. At each tem-
perature, 100K samples were generated, omitting the first 40K as burn-in. Approximation of the expected log 
likelihood with respect to the power posterior at temperature ti relies on convergence of the MCMC sampler 
at that temperature. To provide some validation that the burn-in period of 40K was sufficient, we inspected 
trace plots of the log-likelihood at each temperature for a random sample of trees. These spot checks gave no 
evidence of any lack of convergence.

After accounting for the Monte Carlo errors, we obtained good agreement between the approximate pos-
teriors π(τ|y) obtained by the power posterior method and by the MCMC scheme with topological moves. In 
the latter case, we computed the Monte Carlo errors approximately, recognising the multinomial sampling 
and the effective sample size. For the power posterior approach, we calculated approximate Monte Carlo 
standard errors numerically based on the the Monte Carlo standard errors of the marginal likelihood approxi-
mations. These, in turn, were computed by piecing together the individual Monte Carlo standard errors from 
the approximation of the expected log-likelihood at each temperature; see Friel and Pettitt (2008) for full 
details. This provided further evidence that the topological moves in Section 3.2 allowed the chains to con-
verge within a reasonable time-frame.

4.1  Standard (homogeneous branch composition) model

To provide a baseline for comparison with the heterogeneous model, we fitted the standard model described 
in Section 2.1, assuming the HKY85 exchangeability matrix. Based on our subjective assessments of the evo-
lutionary process, we specified a prior distribution of the form outlined in Section 2.3, with a gamma Ga(1,1) 
prior for the transition-transversion ratio ρ and a flat Dirichlet (1, 1, 1, 1)D  prior for the single composition 
vector π. In the priors for the site rates and the branch lengths we chose a

α
 = b

α
 = 10 and a

ℓ
 = 1, b

ℓ
 = 5.6, respec-

tively. The hyperparameters a
ℓ
 and b

ℓ
 were chosen in the manner described in Section 2.3, based on an expo-

nential Exp(10) prior for the branch lengths j′�  under the interpretation-parameterisation.
Our MCMC-based approximations of the posterior probabilities for the unrooted topologies in Figures 1A 

and 1B were 0.7706 and 0.2294, respectively. The remaining 13 unrooted trees on five species received neg-
ligible posterior support. As expected, the standard analysis does not support the tree which the biologists 
believe to be correct.

4.2  Allowing for across-branch heterogeneity

In the analysis using the heterogeneous model, we again assumed an HKY85 based substitution model, with 
a single unknown exchangeability parameter ρ. We carried out two analyses which differed only in the choice 
of prior for the composition vectors. In the first we used Prior A with a

π
 = 9/4 and b

π
 = 8 leading to correlations 

of 0.5 between all composition vectors. In the second we used Prior B with a
β
 = 0.85 and b

β
 = 0.47 leading to 

correlations of Corr(πjk, πa(j),k)0.83 between the composition vectors on a branch and its immediate ancestor. 
In each case the marginal prior means and variances of πjk were equal to the those for the equivalent compo-
nent πk of the single composition vector π in the homogeneous analysis above. The correlations were chosen 
using the prior-predictive method described in Section 2.3 with a large reference dataset of bacterial rRNA 
sequences. All other hyperparameters in the prior distribution were chosen to match those in the homogene-
ous analysis.
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One of the main advantages of the heterogeneous model over standard models is that it facilitates infer-
ence about the root position. Of the 105 possible rooted topologies on five species, only two received poste-
rior support greater than 0.02. These are depicted in Figure 3 which also shows their posterior probabilities 
under both priors. Ignoring the root position, both trees represent the same unrooted topology, namely the 
one which is believed to be correct, that is, the tree in Figure 1B. By adding together the lengths of the two 
branches on either side of the root and leaving the lengths of the other branches unchanged, we can deduce 
the set of unrooted-tree-branch-lengths implied by the rooted trees in Figure 3. For each of the two rooted 
trees and under both priors, the posteriors for these branch lengths showed considerable overlap with those 
for the corresponding branch lengths under the assumption of a branch homogeneous model. There was, 
however, slightly more support for shorter external branches leading to Deinococcus and Bacillus under the 
branch heterogeneous model. This is likely to be because the only way in which the homogeneous model can 
explain the differing base compositions in Deinococcus and Bacillus relative to the other species is through 
longer branches leading to these species.

There is no biological consensus as to the root position of the five-species tree in Figure 1B, however, 
the root position on the posterior mode agrees with the tree inferred by Ciccarelli et al. (2006), in which the 
relationships amongst these bacteria were polarised by the inclusion of archaeal and eukaryotic outgroups. 
The root position in Figure 3B is less plausible biologically because it places the root between Deinococcus 
and Thermus which are united by a number of cellular and genomic characteristics not shared by the other 
species (Omelchenko et al., 2005).

Figure 4 shows summaries of the posterior distributions for the composition vectors πj, j = 0, …, 8, 
conditional on the posterior modal topology. In these plots, there is considerable evidence of compo-
sitional heterogeneity, with the central 95% of the posterior distributions for many branches showing 
clear separation. In particular this is true of the external branches leading to the mesophiles Bacillus 
(j = 1) and Deinococcus (j = 5), with the posteriors for the probability of cytosine (πjC, j = 1,5) and uracil (πjU, 
j = 1,5) placing much more density at smaller (cytosine) and larger (uracil) values than other branches. 
This evidence of compositional heterogeneity is backed up by the marginal likelihood calculations. Under 
both priors, the Bayes Factor in favour of the branch heterogeneous model over the branch homogeneous 
model is  > 1030.

In this example, although the posteriors for some composition vectors were more diffuse under Prior 
A than Prior B, posterior inferences about the πj and all other unknowns were generally very similar 
under both priors. In problems involving larger trees, it is possible that the prior could impart more influ-
ence, and so the question of which distribution more accurately reflects prior opinion should be carefully 
considered.
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Aquifex

Thermotoga

Deinococcus

Thermus

0

1

8

4
2

3

7
5

6
0.1

A B

Posterior prob.
p̂top| Prior A 0.9576 (0.0046)
p̂pp | Prior A 0.9350 (0.0339)
p̂top| Prior B 0.9053 (0.0015)
p̂pp | Prior B 0.9313 (0.0390)

Deinococcus

Thermus

Bacillus

Aquifex

Thermotoga
0.1

Posterior prob.
p̂top| Prior A 0.0402 (0.0045)
p̂pp | Prior A 0.0415 (0.0256)
p̂top| Prior B 0.0942 (0.0015)
p̂pp | Prior B 0.0675 (0.0387)

Figure 3 The only two trees to receive non-negligible posterior support when fitting the branch heterogeneous model. Also 
shown are their posterior probabilities under both priors calculated using the MCMC run with topological moves top

ˆ( )p  and 
the power posterior method pp

ˆ( ).p  Terms in parentheses are Monte Carlo standard errors. Branch lengths (transformed to the 
interpretation-parameterisation) are posterior means from the analysis under Prior B.
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Figure 4 Posterior summaries in this plot are conditional on the topology and labelling in Figure 3A. For the root j = 0 and all 
branches j = 1, …, 8, posterior means with 95% equi-tailed Bayesian credible intervals are shown for (A) πjA (B) πjG; (C) πjC; and (D) 
πjU under Prior A ( ) and Prior B ( ). Also indicated are the prior means with 95% equi-tailed Bayesian credible 
intervals under Prior A ( ) and Prior B ( ), as well as the mean ( ), 2.5% and 97.5% points ( ) in the 
posteriors for the components of the single composition vector π in the homogeneous analysis.

5  Tree of life application
In Section 1 we introduced the controversial issue of the origin of eukaryotes on the tree of life. In this section 
we explore this issue by considering a concatenated alignment of the small (16/18S) and large (23/28S) subunit 
rRNA genes (hereafter SSU and LSU) from a selection of Bacteria, Archaea and eukaryotes. These genes form 
the functional core of the ribosome, and as such are conserved across all cellular lifeforms; they therefore 
represent key phylogenetic markers for resolving the tree of life. The genes were aligned with Muscle (Edgar, 
2004), Mafft (Katoh et al., 2002), ProbCons (Do et al., 2005), and Kalign (Lassmann and Sonnhammer, 2005), 
and a consensus alignment generated with Meta-Coffee (Wallace et al., 2006). Poorly-aligning positions were 
identified and removed using BMGE (Criscuolo and Gribaldo, 2010) with the default parameters. The resulting 
alignment contains 761 sites in the LSU parition and 720 sites in the SSU partition, giving 1481 sites in total.

We chose to fit an HKY85-based substitution model. However, in order to accommodate potential differ-
ences between the LSU and SSU genes, we allowed different transition-transversion ratios ρLSU and ρSSU for 
each gene. Based on our subjective prior assessments of the evolutionary process, we then assigned a hierar-
chical gamma prior to these parameters which induced positive correlation between them, that is,

2 2~IG( , ) and | ~Ga(1/ , 1/( )), LSU, SSU,id e c c i
ρ ρ ρ ρ ρ ρ ρ

µ ρ µ µ =

where IG(d, e) denotes the inverse gamma distribution with shape and scale parameters d and e. We take 
c

ρ
 = 0.42, d

ρ
 = 3.43 and e

ρ
 = 2.43. Similarly, we allowed different shape parameters αLSU and αSSU in the gamma 

model for across site rate heterogeneity for the two gene partitions and adopted an analogous hierarchical 
prior, taking the corresponding hyperparameters to be c

α
 = 0.167, d

α
 = 16.3 and e

α
 = 15.3. Note that the FCDs for 

the unknown means μ
ρ
 and μ

α
 are inverse gamma with

2 2
LSU SSU| ~IG( 2 / , ( ) / ),d c e c

ρ ρ ρ ρ ρ
µ ρ ρ⋅ + + +

and an analogous expression for μ
α
. Branch lengths were assumed to be common across genes and so in addi-

tion we chose to assume the same branch and root compositions in the LSU and SSU partitions.
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We believe that an autoregressive evolution of the composition vectors down the tree represents a bio-
logically plausible hypothesis concerning heterogeneity in branch composition. Therefore we chose to use 
Prior B which has this structure and picked the hyperparameters to be a

β
 = 0.94 and b

β
 = 0.31 using the prior 

predictive method from Section 2.3 with a large reference dataset of Bacteria, Archaea and eukaryotes. For the 
reasons provided in the application in Section 4, we chose independent gamma priors for the branch lengths 
ℓj with a

ℓ
 = 1 and b

ℓ
 = 5.6.

During MCMC sampling, we generated 5M draws from the posterior, after a burn-in of 50K samples, thin-
ning the remaining output to retain every 100th iterate. Convergence was assessed by running two chains, 
initialised at different starting points, and employing the graphical diagnostic checks outlined in Section 4. 
These checks gave no evidence of any lack of convergence.

Figure 5 shows the rooted majority-rule consensus tree (Bryant, 2003) alongside the posterior modal 
tree which has probability 0.2383, almost 0.1 greater than the posterior support received by any other tree. 
We note that the TACK Archaea and Euryarchaoeta are both archaeal clades. The consensus and modal trees 
differ only in the resolution of the two bacterial species closest to the root. The topologies of these trees 
must be interpreted with caution, however, because taxon sampling has previously been shown to affect 
inferences of the tree of life from rRNA (Williams et al., 2012). Nonetheless, it is interesting to note that even 
with limited taxon sampling, our analysis recovered an eocyte tree (Lake et al., 1984), with the eukaryotic 
rRNA sequences emerging from within the Archaea, that is, as the sister group to the TACK Archaea (Guy and 
Ettema, 2011). Perhaps surprisingly, we inferred a root within the Bacteria, rather than between the Bacteria 
and Archaea – the consensus view that was originally suggested based on analyses of ancient gene duplica-
tions (Gogarten et al., 1989; Iwabe et al., 1989). Analyses including an expanded sampling of prokaryotes will 
likely be required to further refine this root position, although we note that this analysis is broadly consistent 
with some alternative rooting approaches that also support a root within the Bacteria (Cavalier-Smith, 2006; 
Lake et al., 2009).

Conditional on the posterior modal topology, posterior distributions for the composition vectors πj, j = 0, 
…, 30, are summarised in Figure 6 in which the branches are labelled so that the posterior mean GC-content, 
E(πjG+πjC|y), decreases with j = 1, …, 30. Again, clear compositional heterogeneity is evident, with the posteri-
ors for many branches showing very little overlap. The composition vector for branch 1 has the highest GC-
content and leads to the clade containing all the Archaea. High GC-content in rRNA is associated with high 
optimal growth temperatures and so our posterior inferences are consistent with the idea that the common 
archaeal ancestor lived in a hot environment (Groussin and Gouy, 2011). The branches leading to the two 
monophyletic clades of Archaea, 5 and 8, as well as the branch leading to the common ancestor of the eukary-
otes and the TACK Archaea (6), also have composition vectors with high GC-contents, whilst that for branch 
21, which leads to the monophyletic eukaryotic clade, has a much lower GC-content. This placement of a 
mesophilic (lower GC-content) branch within a clade of high GC-content branches might therefore provide 
an explanation as to why standard models do not often recover a tree with eocyte topology (Williams et al., 
2013). It is also interesting that the two largest changes in the GC-content of composition vectors on neigh-
bouring internal branches occur between branches 6 and 21 (with posterior mean difference 0.222) and 9 and 
1 (with posterior mean difference –0.116). It follows that the two longest branches, 1 and 21, are associated 
with large changes in GC-content. The need for thermal adaptation might therefore provide an explanation 
for their lengths.

6  Discussion
We have presented a model for sequence evolution which allows sequence composition to change over evo-
lutionary time. This was achieved by allowing the root and every branch of the tree to be associated with its 
own composition vector. To encourage the sharing of information between branches, we have proposed two 
priors in which the composition vectors are positively correlated. In the first, the correlation between all pairs 
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Figure 5 (A) Rooted majority-rule consensus tree with posterior clade probabilities and (B) posterior mode with branch labels. 
Branch lengths are posterior means under the data-augmentation-parameterisation and cannot be interpreted as expected 
numbers of substitutions per site. However longer branches generally indicate more evolution.

of composition vectors is the same. In the second, an autoregressive structure is assumed in which composi-
tions on neighbouring branches are more strongly correlated than compositions on well separated branches. 
For posterior inference, we have proposed an efficient MCMC algorithm which uses data augmentation to 
give a likelihood function which factorises over branches. Unlike some related models from the literature, the 
dimension of our model is fixed and so inference via MCMC can proceed without the convergence and mixing 
problems which commonly accompany dimension-changing moves.

In the applications to the Thermus/Deinococcus and tree of life datasets, our branch heterogeneous 
model and prior led to biologically credible topological inferences, and the data showed evidence of sub-
stantial compositional heterogeneity. From a biological perspective, the ability of our model to infer the 
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Figure 6 Posterior summaries in this plot are conditional on the topology and labelling in Figure 5B. For the root j = 0 and all 
branches j = 1, …, 30, posterior means with 95% equi-tailed Bayesian credible intervals are shown for (A) πjA; (B) πjG; (C) πjC; and 
(D) πjU under Prior B ( ). Also indicated are the prior means with 95% equi-tailed Bayesian credible intervals ( ).

root position is highly significant. As discussed in Section 1, standard phylogenetic models only allow infer-
ence of unrooted trees. To get around this problem, a commonly used strategy is outgroup rooting in which 
distantly related species (the outgroups) are included in the alignment and the root of the unrooted tree 
is assumed to lie on the branch leading to the outgroups. The subtree for the ingroups is thereby rooted. 
Unfortunately, outgroup rooting often provides an unsatisfactory solution, for example, because the choice 
of outgroup can affect the relationships within the ingroup (Holland et al., 2003; Gatesy et al., 2007). It is 
therefore very useful for evolutionary biologists to have a statistical tool which facilitates inference about 
the root position.

The alignments considered in Sections 4 and 5 were relatively small, with data on at most sixteen taxa. In 
most phylogenetic problems, the datasets of interest contain many more species. The model and inferential 
procedures described here could be applied in analyses of these larger datasets. However, our experience 
suggests that mixing over tree space can sometimes be slow when a large number of taxa are included in the 
alignment. If slow convergence precludes a full exploration of tree space, it would still be possible to use our 
model to investigate different root positions on a fixed unrooted topology. Indeed there are many datasets 
for which there is biological consensus in the unrooted topology, with interest lying primarily in the position 
of the root. For example, there is broad agreement on the composition of the major eukaryotic supergroups 
(Embley and Martin, 2006; Adl et al., 2012), but the position of the root, and therefore their order of diver-
gence, remains controversial (Stechmann and Cavalier-Smith, 2002; Cavalier-Smith, 2010). Investigating dif-
ferent root positions could be achieved either by evaluating the marginal likelihood for all rooted versions of 
the unrooted tree or by running a reduced version of our MCMC algorithm in which the NNI and SPR propos-
als are omitted.
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Appendix A: Full conditional distributions
The FCDs for all model parameters in θ can be deduced using the complete data likelihood (2) and the priors 
described in Section 2.3. For the GTR exchangeability matrix, the ρij are conditionally independent in their 
joint FCD and have gamma distributions, with

1 1 1 1
| ~Ga , ( )

M B M B
lm ml j m l

lm ij ij i jl ij jm ij
i j i j

a u u b r w w
ρ ρ

ρ π π
= = = =

  ⋅ + + + + 
  

∑∑ ∑ ∑�

for pairs (l, m) such that l = 3, …, K and m = 1, …, l–1. The notation “|·” denotes conditioning on all other vari-
ables and the terms lm

iju  and l
ijw  were defined in (3). Note that in the special case of the HKY85 exchange-

ability matrix for DNA, the FCD for the single exchangeability parameter (the transition-transversion ratio ρ) 
is ρ|·∼Ga(A, B) where
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The site-specific rates {ri} and the branch lengths {ℓj} are both conditionally independent in their joint 
FCDs with gamma distributions. These are
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The FCD for the shape parameter α in the hierarchical prior for the site-specific rates is non-standard 
with density

1

1 1
( | ) exp log / ( ) .

M M
a M M
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π α α α Γ α+ −
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New values α* are proposed from q(α*|α)≡Ga(ω
α
, ω

α
/α) which is centred at the current value as E(α*|α) = α. 

The tuning parameter ω
α
 is the reciprocal of the squared coefficient of variation and so increasing it will 

encourage more local moves.
If Prior A is used, the FCD for the unknown mean μ

π
 is also non-standard with density

, 11 ( 1)
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Proposals 
π
∗µ  are generated from the Dirichlet distribution

,1 ,2| ~ ( ),r Kπ ππ π π
ω ω∗ + 1D

µ µ
µ µ µ

which is roughly centred at the current value μ
π
. Here ω

μπ,1∈ℝ+ and ω
μπ,2∈ℝ+ are tuning parameters. The first 

is akin to a precision parameter and should be tuned to adjust the acceptance rate. The second helps to 
prevent the sampler from becoming stuck at the boundaries of the simplex and should be set close to zero; 
for example, ω

μπ,2 = 0.005 We refer to this form of proposal as a Dirichlet random walk. Under Prior A, the 
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composition vectors πj, j = 0, …, B are conditionally independent in their joint FCD but the density for each 
composition vector is non-standard. We sample each πj using a Dirichlet random walk proposal.

If Prior B is used, it is convenient to work in terms of the reparameterised composition vectors βj, j = 0, …, B. 
The βj have a non-standard joint FCD. We sample the βj one at a time in a series of Metropolis-within-Gibbs steps 
using Gaussian random walks with innovation variance ω

βj
IK–1, where IK–1 is the (K–1) × (K–1) identity matrix and 

ω
βj
 is a tuning parameter. Note that because the prior and proposal are both expressed in terms of the βj, the 

Jacobian of the change of variables from πj to βj cancels in the acceptance ratio and need not be computed.

Appendix B: Acceptance probability for the SPR proposal
Recall that the constraints *

a bg
e ee

= +� � �  and * *
ga b

ee e
+ =� � �  are imposed on the proposed branch lengths during 

the SPR move. These can be satisfied if we introduce an auxiliary random variable u∈[0,1] and set

* *, and (1 ) .
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e ee e
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For dimension matching, the reverse move would also involve an auxiliary variable * / ( ) [0,1].
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The auxiliary variables are drawn from a Beta(ωSPR, ωSPR) distribution, where ωSPR is a tuning parameter. 
Choosing large values ωSPR > 1 encourages splits towards the centre of the branch whilst values ωSPR < 1 encour-
age splits towards the ends of branches.

The acceptance probability for the proposal is min{1, A} where
* * * ** *

* *

( , ) ( , | , )( | , )
( | , ) ( , ) ( , | , )

qp yA
p y q

π τ τ ττ

τ π τ τ τ
= × ×
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and q denotes the proposal distribution. The prior ratio can also be simplified. Under Prior A, for example, 
we have

* * * * * * *
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as the uniform prior on topology gives π(τ*)/π(τ) = 1.
We can also simplify the proposal ratio into the product
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Here the first ratio cancels as every tree topology has the same number of neighbouring topologies 
obtained by a single SPR operation (Allen and Steel, 2001). The second term is a ratio of Dirichlet densities, 
while the third has the form

* * * * * *
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As with the NNI move, a new substitution history (n, z, z0, t) is generated only if the proposed parameters 
(τ*, θ*) are accepted.
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