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a b s t r a c t

Gene gain-loss-duplication models are commonly based on continuous-time birth–death processes.
Employed in a phylogenetic context, such models have been increasingly popular in studies of gene
content evolution across multiple genomes. While the applications are becoming more varied and
demanding, bioinformatics methods for probabilistic inference on copy numbers (or integer-valued
evolutionary characters, in general) are scarce.

We describe a flexible probabilistic framework for phylogenetic gain-loss-duplication models. The
framework is based on a novel elementary representation by dependent random variables with
well-characterized conditional distributions: binomial, Pólya (negative binomial), and Poisson.

The corresponding graphical model yields exact numerical procedures for computing the likelihood
and the posterior distribution of ancestral copy numbers. The resulting algorithms take quadratic time
in the total number of copies. In addition, we show how the likelihood gradient can be computed by
a linear-time algorithm.

© 2022 Published by Elsevier Inc.
1. Introduction

Homology between two genes is the equivalence relation of
escent from the same ancestral gene (Fitch, 2000), defining
he corresponding equivalence classes of gene families. During
genome annotation, homologies are routinely recognized by se-
quence similarity, and annotated genes are assigned to fami-
lies (Aziz et al., 2008). The copy number for a family is the
number of family representatives in the genome, a non-negative
integer. The profile of a family comprises the copy numbers across
different genomes. Family profiles are used in evolutionary ge-
nomics to infer ancestral gene content (Csűrös and Miklós, 2009),
and in functional genomics to recognize associations between
families (Dey and Meyer, 2015).

Probabilistic approaches to copy number evolution are based
on continuous-time birth–death processes (Novozhilov et al.,
2006; Nye, 2009). Such processes are also fundamental in queu-
ing theory (Takács, 1962), epidemiology and population growth
models (Kendall, 1949). In the context of genome evolution, the
process captures fixation events eliminating a gene (‘‘death’’) by
segmental loss and pseudogenization, or adding a gene (‘‘birth’’)
to the genome, either by duplication within the same genome,
or by lateral transfer from another genome. Birth-death events
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are used also to model speciation-extinction in phylogenies (Nee
et al., 1994; Stadler, 2009) and infection-recovery rates in epi-
demics (Tanaka et al., 2006). The evolution of various integer-
valued traits can be modeled by birth–death processes with
additional events: polyploidization for chromosome number evo-
lution (Mayrose et al., 2010), locus shifting for transposons (Rosen-
berg et al., 2003; Xu et al., 2015), or point mutations for mi-
crosatellite repeats (Kruglyak et al., 1998).

This work focuses on branching linear birth–death processes.
In particular, we assume the classic birth, death, and immigra-
tion (BDI) process (Karlin and McGregor, 1958; Tavaré, 1989),
where ‘‘immigration’’ and ‘‘birth’’ for a multigene family are lat-
eral transfer and duplication events, respectively. The phylogeny
encodes the branching pattern of the process: child lineages
evolve independently by BDI processes from the same set of
ancestor copies. The algorithmics of phylogenetic birth–death
models is difficult mainly because of the intricate transition prob-
abilities in birth–death processes without known closed expres-
sions. Non-linear birth–death models can be analyzed for their
asymptotic behavior (Karev et al., 2004). The transient proba-
bilities can be approximated (Crawford et al., 2014) when the
process is sampled at discrete time intervals. But even the sim-
plest non-linear model, the M/M/1 queue (constant birth and
death rates Iwasaki and Takagi, 2007) lacks a closed-form solu-

tion (Leguesdron et al., 1993).
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Bioinformatics problems for copy numbers differ fundamen-
tally from molecular sequence evolution problems with a finite
character set, and porting standard methods to an unbounded
character domain is generally not possible. A simple, but un-
satisfactory fix is to impose a limit on maximum copy number,
and usual techniques like Felsenstein’s peeling method (Felsen-
stein, 1973) apply. Indeed, pioneer applications of birth–death
processes for gene content evolution by Hahn et al. (2005) and
by Iwasaki and Takagi (2007) employ the same workaround.
Setting a maximum is useful for non-linear birth–death models,
as transition probabilities can be computed by (finite)
exponentiation from an arbitrary rate matrix (Iwasaki and Tak-
agi, 2007; Spencer et al., 2006; Ames et al., 2012; Fukunaga
and Iwasaki, 2021). The first algorithm for computing the pro-
file likelihood for unbounded copy numbers with a gain-loss-
duplication model (Csűrös and Miklós, 2006) is based on an
inclusion-exclusion formula. A numerically more stable algorithm
was developed subsequently (Csűrös and Miklós, 2009), and the
corresponding methods are implemented in the software package
Count (Csűrös, 2010), which has been used in hundreds of studies.

We introduce a fresh mathematical framework for linear gain-
loss-duplication (and gain-loss without duplication, or
duplication-loss without gain) models on a phylogeny. The novel
formulation is based on Theorem 2 giving the transition proba-
bilities in a closed form that involves only basic discrete distribu-
tions. The theorem suggests a fundamental dependency network
of random variables along the phylogeny, representing ancestral
copy numbers and inheritance (survival) in child lineages. The
elementary decomposition yields relatively simple algorithms
to compute the likelihood of a family profile (Theorem 5). The
network factorization also leads to an algorithm for posterior
probabilities of ancestral copy numbers (Theorem 7 and Corol-
lary 8), and to our main result, a hitherto elusive algorithm for
computing the gradient of the log-likelihood with respect to
model parameters (Corollary 11 and Theorem 12). The gradient
and likelihood calculations take quadratic time in the total num-
ber of observed copies (Theorem 15), making them pragmatic
even for large phylogenies.

2. Theory

A phylogeny is a rooted binary tree with nodes numbered
u ∈ [R] = {1, 2, . . . , R}. Every node either has two non-null
child nodes, or is a terminal node (a leaf ) with two null children.
For ease of notation, we assume that the nodes are indexed
respecting postfix order, with every child’s index being less than
the parent’s, so that the last one is the root. The tree is identified
by its root R and its edges T ⊂ [R] × [R] directed from parent
to child. The edges in the subtree rooted at a node u are denoted
by Tu, including TR = T . The set of leaves is denoted by L, and the
leaf set for Tu by Lu; in particular, LR = L. For simplicity, start
the indices with the leaves respecting the postfix order, so that
L = [L] and every subset Lu comprises consecutive integers.

Consider the problem of copy number evolution: each node u
has an associated random variable ξu, called the copy number,
taking non-negative integer values, and the joint distribution is
determined by dependencies along the phylogeny:

P{ξ1 = n1, . . . , ξR = nt} = P{ξR = nR}
∏
uv∈T

P
{
ξv = nv

⏐⏐⏐ ξu = nu

}
  

transition on edge uv

.

(1)

The leaf variables are observable, corresponding to extant species,
forming the profile Ξ = {ξv}v∈L. Non-leaf nodes are (hypo-
thetical) ancestors with unobserved copy numbers. The ances-
tral inference problem is that of estimating {ξ } for ancestral
u u̸∈L

81
Fig. 1. Example of copy number evolution on an edge uv. Parental copies 1
and 3 survive in the child, with ζ1 = 2 and ζ3 = 1 inparalogs resulting from the
histories of duplications and losses. In contrast, parental gene 2 is lost (ζ2 = 0),
so the number of surviving copies is ηv = 2. A copy is gained from an external
source (diamond) and subsequently duplicates to result in χ = 2 xenolog copies.

odes, knowing the distribution of Eq. (1) and Ξ . Suppose that
e observe the leaf variables across sample profiles called fam-

lies f = 1, . . . , F , with independent and identically distributed
(iid) copy number vectors (ξ1,1, . . . , ξ1,R), . . . , (ξF ,1, . . . , ξF ,R). The
model inference problem is that of deducing the distribution of (1)
from an iid sample (Ξ1, . . . ,ΞF ).

2.1. Copy number evolution with gain, loss and duplication

For every family, the copies evolve independently on each
edge uv via gene duplications and losses, as well as
non-duplication gains (e.g. lateral transfer from another species).
In particular, the child’s copy number ξv for n = ξu parental
copies is the sum of the random variables χ and ζ1, . . . , ζn, where
every ζi is the number of inparalog child copies of the same parent
gene i, and χ is the number of xenolog copies without an ancestor
at the parent:

ξv = χ +

ξu∑
i=1

ζi. (2)

See Fig. 1 for an illustration. Our terminology for xenologs and
inparalogs follows classic definitions of different homology types
(Fitch, 2000; Sonnhammer and Koonin, 2002). Outparalogs, as
opposed to inparalogs, are child copies that descend from differ-
ent parent copies. Inparalogs are indistinguishable in the model,
and therefore orthology between gene copies at different nodes
is not considered here. Xenolog histories involve an interspecies
transfer of genetic material, modeled by imagining a virtual, ex-
ternal gene that produces copies within the genome. In the copy
number evolution model, the source of the gain is immaterial, so
innovation or de novo gene birth also creates xenologs.

We assume a linear model in Eq (2), where χ and all ζi are
ndependent, and the inparalogs ζi are identically distributed. If
i = 0 for some i, the parental copy i is lost, otherwise it survives
in v. A continuous-time model is obtained by imposing a birth–
death process ξ (t) on every edge uv ∈ T during some time tuv ≥ 0
(the edge length), so that ξu = ξ (0) and ξv = ξ (tuv). In the linear
setting of Eq. (2),

ξ (t) = χ (t)+
ξu∑
i=1

ζi(t),

with χ (t) counting the xenolog copies, and ζi(t) counting inpar-
alogs descending from the same parent gene i. The xenolog and
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nparalog processes create a set of Galton–Watson trees over the
opies with time-annotated nodes (Tavaré, 1989). Loss events
reate terminal nodes and duplication events create bifurcations
see Fig. 1). Our interest lies not in inferring the genealogies
i.e., in reconciling the gene histories with the species phylogeny),
ut rather in designing a model for the copy numbers without
xplaining where each copy originates.
The inparalog process is characterized by the constant instan-

aneous rates for loss µ > 0 (per copy) and duplication λ > 0
(per copy). The xenolog process has the same per-copy rates, but
also includes birth by gain with some rate κλ > 0. Accordingly,
for the total copy number ξ (t), n → (n − 1) death events arrive
with a rate of µn, and n→ (n+1) birth events arrive with a rate
f λ(n+κ). In particular, for Pn(t) = P{ξ (t) = n}, the Kolmogorov

backward equations are

P ′0(t) = µP1(t)− λκP0(t)

and for 0 < n,

P ′n(t) = λ(n−1+κ)Pn−1(t)+µ(n+1)Pn+1(t)−(λ(n+κ)+µn)Pn(t)

with P ′n(t) =
∂Pn(t)
∂t .

The no-duplication model is the limit for κλ → γµ while the
uplication rate λ→ 0:
′

0(t) = µP1(t)− µγ P0(t)

and, for 0 < n

P ′n(t) = µγ Pn−1(t)+ µ(n+ 1)Pn+1(t)− µ(γ + n)Pn(t)

which is characterized by loss rate µ and the relative gain rate γ .
In the no-duplication model, birth events arrive at the same rate,
independently from the number of existing copies, while each
copy is lost independently with the same rate.

The parametrization by relative gain rates κ or γ with respect
to λ or µ is mathematically convenient because they show up
directly in the formulas for transition probabilities. In a biolog-
ical interpretation, the components µ and λ are the per-copy
instantaneous rates of loss and duplication, which can be em-
bedded in a population-genetic model of genome size evolution,
so that they are determined by a selection coefficient, and the
(constant) population size (Sela et al., 2016). If selection, and,
consequently, fixation probabilities, for gained xenolog copies
are identical to inparalog copies, then 0 < κ represents the
relative rate of gene birth by non-duplication processes (including
horizontal gene transfer and innovation), and gene birth by dupli-
cation (including segmental duplication and retrotranscription).
The particular case κ = 1 is the process of gene length evolution
in the Thorne-Kishino-Felsenstein model (Thorne et al., 1991) for
molecular sequences, where insertions by the immortal link play
the same role as xenolog copies here, and µ, λ are the deletion
and insertion rates per residue.

2.2. Transient probabilities for linear birth–death processes

The basic transition probabilities for the xenolog and inpar-
alog processes are well understood (Kendall, 1949; Karlin and
McGregor, 1958). Denote the transient probabilities by

hn(t) = P
{
χ (t) = n

}
and gn(t) = P

{
ζ (t) = n

}
with starting values χ (0) = 0 and ζ (0) = 1. Then χ (t) has either
Pólya distribution (the generalized version of negative binomial,
allowing for non-integer κ parameter) when λ > 0, or Poisson
distribution when λ = 0. The inparalogs ζ (t) follow a shifted
geometric distribution.

hn(t) =
(
κ + n− 1

)
(1− q)κqn if λ, κ > 0 (3a)
n
82
=

{
(1− q)κ {n = 0}
κ(κ+1)···(κ+n−1)

n! (1− q)κqn {n > 0}

n(t) = e−r
rn

n!
if λ = 0 (3b)

gn(t) =
{
p {n = 0}
(1− p)(1− q)qn−1 {n > 0}

(3c)

ith the parameters

=
µ− µe−(µ−λ)t

µ− λe−(µ−λ)t
(4a)

q =
λ− λe−(µ−λ)t

µ− λe−(µ−λ)t
if λ > 0 r = γ (1− e−µt ) if λ = 0

(4b)

assuming λ ̸= µ; or if λ = µ,

p = q =
µt

1+ µt
. (4c)

Note that the formulas remain valid for all transient probabilities
(t <∞), including when λ > µ, even if the birth–death process
has a stationary distribution only when λ ≤ µ.

The rates and the edge length can be rescaled simultane-
ously without affecting the distributions. Dissecting into scale-
independent parameters (assuming q ̸= p):

p =
1− e−δ(µt)

1− (1− δ)e−δ(µt)
1− p =

δe−δ(µt)

1− (1− δ)e−δ(µt)

q =
(1− δ)

(
1− e−δ(µt)

)
1− (1− δ)e−δ(µt)

1− q =
δ

1− (1− δ)e−δ(µt)

ith δ = 1 − λ/µ = 1 − q/p. The formulas are invertible:
or a given 0 < p, q < 1 we can find δ and the scaled edge
length (µt). Therefore, copy number evolution on every edge is
fully determined by the distribution parameters (p, q, κ) or (p, r),
because they define the birth–death process parameters.

Theorem 1 (Unicity of Distribution Parameters). Let 0 < t be fixed.
or any given 0 < p, q < 1 and 0 < κ , or with q = 0, for any given
0 < p < 1 and 0 < r, there exist rate settings 0 < µ, 0 ≤ λ that
yield those distribution parameters as in Eq. (4).

Proof. If q = 0, then λ = 0, and by p = 1 − e−µt and r = γ p,
we can set µt = − ln(1 − p) and γ = r/p to match p and r . If
0 < q = p, then set (µt) = p/(1 − p) and λ = µ. Otherwise,
since q/p = 1 − δ and (1 − q)/(1 − p) = eδµt , set δ = 1 − q

p ,
(µt) = ln 1−q

1−p/(1− q/p) and λ = µ(1− δ). □

3. Results and discussion

Based on the transient probabilities for xenolog and inparalog
copy numbers (starting with 0 or 1 copies), we infer the prob-
abilities for copy number changes in the general case (starting
with n copies) in Section 3.1. In Section 3.2, we discuss the
likelihood model for copy numbers on a phylogeny using two
random variables per node: the copy number ξ at the node
and the number of non-empty inparalog groups η in the lineage
leading to the node. The model is parametrized by a triple of
(κ, p, q) gain-loss-duplication parameters on each edge; or by the
gain-loss parameter couple (r, p) in the no-duplication model.
The infinite summations in the likelihood formulas of (10) and
(11) are exploited in Section 3.3 to infer the probability of un-
observed gene families with 0 copies at all leaves. Theorem 4
not only gives the probability of the empty profile, but also
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stablishes the (per-copy) survival parameters p̃, q̃ and the (per-
opy) extinction probability ϵ that are used in further calculations.
finite likelihood computation for arbitrary copy number profiles
t the leaves is introduced in Section 3.4 that uses conditioning on
ncestral copy numbers (random variables ξ̃u, η̃u at every node u):
enes with descendants in at least one terminal lineage. In par-
icular, Theorem 5 gives the postorder recurrences for computing
he likelihood.

In Section 3.5, the postorder likelihood computation is coupled
y a preorder recurrence on the phylogeny for complementary
utside likelihoods in Theorem 7, which are plugged into the
ormulas for posterior probabilities of ancestral copy numbers
n Corollary 8. In order to lay the foundations for the opti-
ization of model parameters by maximizing the likelihood, we
escribe a numerical procedure for computing the partial deriva-
ives of the likelihood in Section 3.6. The gradient with respect
o survival parameters (p̃, q̃) can be obtained directly from the
osterior expected copy numbers (Theorem 10 and Corollary 11).
heorem 12 describes an algorithm for computing the gradient
ith respect to the original model parameters p, q in a preorder
raversal of the phylogeny. The numerical algorithms for the no-
uplication model are described in Section 3.7. Our concluding
esult in Section 3.8 shows that the algorithms take quadratic
ime for computing the likelihood, the posteriors and the gradi-
nt. Proofs for the major theorems are in the Appendix. Table 1
ummarizes the important notations in our discussion.

.1. Transient probabilities in the general case

First, suppose that duplications are allowed, and λv > 0 on all
dges uv ∈ T . If there are ξu = n copies at an ancestral node u,
hen they evolve independently along each child edge uv:

v = χ + ζ1 + · · · + ζn (5)

here χ denotes the xenolog copies, and ζi denote iid vari-
bles for the descendant inparalog copies from each parental
nstance i = 1, . . . , n. The ζi variables follow the basic transition
robabilities from Eq. (3)

{χ = k} = hk(tuv) and P{ζi = k} = gk(tuv).

he key observation for calculating P
{
ξv = m

⏐⏐⏐ ξu = n
}
=

{χ + ζ1+· · ·+ ζn = m} is that ζi|ζi > 0 has the same geometric
ail as the Pólya distribution of χ . Since the distributions with the
ame tail parameter q can be summed directly, ξv − s has a Pólya
istribution with parameter (κ + s), where s =

∑n
i=1{ζi > 0} is

he number of surviving copies. (The shorthand notation {ζi > 0}
enotes indicator variable that takes the value 1 whenever ζi is
ositive, and the value 0 when ζi = 0.)

heorem 2 (Transient Probabilities in the General Case). For a linear
irth–death process with parameters κ, λ, µ > 0,{
ξ (t) = m

⏐⏐⏐ ξ (0) = n
}

min{n,m}∑
s=0

(
κ +m− 1

m− s

)
(1− q)κ+sqm−s

(
n
s

)
pn−s(1− p)s (6)

with the parameters p, q defined in Eqs. (4).
For a linear birth–death process with parameters λ = 0 and

µ, γ > 0,

P
{
ξ (t) = m

⏐⏐⏐ ξ (0) = n
}
=

min{n,m}∑
s=0

e−r
rm−s

(m− s)!

(
n
s

)
(1− p)spn−s

(7)

with the parameters p, r defined in Eqs. (4).
 c

83
The original recursive algorithm of Csűrös and Miklós (2009)
for computing the profile likelihood uses the basic birth–death
transitions from (3), and arrives at a set of recurrences by combi-
natorial principles. We can infer the same method algebraically
in the present framework — by extracting the recurrences for
transition probabilities from Theorem 2.

Corollary 3 (Transition Probability Recurrences). Let uv ∈ T be any
edge and w(m | n) = P

{
ξv = m

⏐⏐⏐ ξu = n
}

denote the transition
robabilities.
For λv > 0, let p = pv, q = qv, κ = κv denote the applicable

istribution parameters from Eq. (4). Then

(m | 0) =
(
κ +m− 1

m

)
(1− q)κqm

nd, for 0 < n,

(m | n) = qw(m | n− 1)
+ {m > 0}(1− p− q)w(m− 1 | n− 1)
+ {m > 0}qw(m− 1 | n).

.2. Phylogenetic model with surviving copies

We amend the phylogenetic model by explicitly inserting a
idden random variable ηv of surviving parental copies between
he copy numbers ξu and ξv on every edge uv. In particular, with
he xenolog-inparalog decomposition of Eq. (5),

v = χ +

ξu∑
i=1

ζi and ηv =

ξu∑
i=1

{0 < ζi}.

ig. 2 shows the example of evolving copy numbers ξ, η on a
mall phylogeny (on the path to leaf 3). For the ease of presenta-
ion, we continue with λv > 0 at every node v, and return to the
o-duplication model afterwards. Using Theorem 2,{
ηv = s

⏐⏐⏐ ξu = n
}

=

(
n
s

)
(1− pv)s(pv)n−s {s ≤ n} (8a){

ξv = m
⏐⏐⏐ ηv = s

}
=

(
κv +m− 1

m− s

)
(1− qv)κv+s(qv)m−s {s ≤ m} (8b)

ith edge-specific loss, duplication, and gain parameters pv, qv,
v .
A complete history fixes all counts ξu and ηu: {ξ1 = n1, . . . , ξR
nR, η1 = s1, . . . , ηR−1 = sR−1}. The joint distribution of our

hylogenetically linked random variables is written explicitly as

P{ξ1 = n1, . . . , ξR = nR, η1 = s1, . . . , ηR−1 = sR−1}

= P{ξR = nR} ×
∏
uv∈T

( (
nu

sv

)
(1− pv)sv (pv)nu−sv  
P
{
ηv=sv

⏐⏐ξu=nu}
(9)

×

(
κv + nv − 1

nv − sv

)
(1− qv)κv+sv (qv)nv−sv  

P
{
ξv=nv

⏐⏐ηv=sv}
)
,

All histories satisfying sv ≤ min{nu, nv} on every edge uv ∈ T and
{ξR = nR} ̸= 0 have positive probability if pu, qu are bounded
way from 0 and 1.
Let Ξ = {nv : v ∈ L} be a profile comprising the observed

opy numbers. The profile likelihood is the sum of all history
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Fig. 2. Gene family evolution on a 4-leaf full binary phylogeny. Circles denote copies with lines connecting homologs among them. The blue diamonds mark a
‘virtual’’ copy outside the genome that is the progenitor of xenolog copies. The random variables ξ and η count all copies and surviving copies from the parent,
espectively On the edge to Node 3 (a leaf), the birth–death process is illustrated with 5 events at random time intervals: duplication (b1, originating from the first
nherited copy) and gain (b2, originating from outside), and losses (d3, d4, d5). The ancestral copy numbers ξ̃ and η̃ count only the copies that have homologs in
t least one descendant (shaded circles). The full birth–death history includes the copies that are extinct in all descendants (white circles, shown along the path
o leaf 3). An equivalent probability distribution is generated by a two-step manufacturing of ancestral copies that have descendants at the leaves: children inherit
urviving copies by asymmetric loss, and surviving copies generate duplicates.
robabilities from (9) for the same profile:

(Ξ )
= P{Ξ}

=

∑
nu,su : u̸∈L

P{ξ1 = n1, . . . , ξR = nR, η1 = s1, . . . , ηR−1 = sR−1},

ith infinitely many terms. Define the partial profile within every
ubtree as Ξu = {∀v ∈ Lu : ξv = nv} where Lu denotes the
eaves in the subtree rooted at u, including the singleton Lu = {u}
henever u is a leaf. Define the likelihood of the partial profiles

conditioned on ξu or ηu:

u(n) = P
{
Ξu

⏐⏐⏐ ξu = n
}

and Ku(s) = P
{
Ξu

⏐⏐⏐ ηu = s
}
.

At a leaf u, we have Cu(n) = 1 if n = nu, the observed
count, or Cu(n) = 0 if n ̸= nu. All other conditional likelihoods
can be expressed using Eqs. (8a) and (8b) about the conditional
distributions ξu | ηu and ηv | ξu. At all nodes u,

Ku(s) =
∞∑
k=0

(
κu + s+ (k− 1)

k

)
(1−qu)κu+s(qu)k×Cu(s+k); (10a)

and at every ancestral node u,

Cu(n) =
∏
uv∈T

( n∑
s=0

(
n
s

)
(1− pv)s(pv)n−s × Kv(s)

)
. (10b)

The family distribution at the root R is needed to sum across
the likelihoods CR(n) to get the profile likelihood

L(Ξ ) = P{Ξ} =
∞∑
n=0

P{ξR = n}P
{
ΞR

⏐⏐ ξR = n
}

=

∞∑
n=0

P{ξR = n} × CR(n).

Assume that the root copy number follows a Pólya distribution
with some parameters κR, qR > 0:

L(Ξ ) =
(
κR + n− 1

)
(1− qR)r (qR)n × CR(n). (11)
n
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After defining ηR = 0, Eq. (11) is the same formula for the
likelihoods KR as on the edges, and L(Ξ ) = KR(0).

3.3. Empty profile likelihood

Typically, the input sample does not include families with an
empty profile that has ξv = 0 at all leaves v. We do not insist
on empty profiles having a particular biological interpretation –
after all, one could add empty profiles based on genes annotated
outside the input genomes – but they should not be ignored. First,
the extinction, or complete loss of descendants for a gene that
existed in some organism at some time is a biologically plausible
scenario. The model, in fact, quantifies the per-copy extinction
probability exactly (by ϵ in Theorem 4). Secondly, the multitude
of unsequenced genomes certainly have many genes waiting to be
discovered. Thirdly, future evolution also results in entirely new
gene families, as the (presumably finite) landscape of functional
coding sequences is explored by mutation and descent. In the first
case, the empty profile has a non-empty history. The latter two
cases are conceptualized by a placeholder empty profile with an
empty history. The model captures our observation bias in the
input sample by the empty profile’s probability.

Theorem 4 (Empty Profile Likelihood). Define the (per-copy)
survival parameters p̃u, q̃u and the (per-copy) extinction probability
ϵu:

(i) ϵu = 0 for all leaves u, and for every non-leaf u, ϵu =∏
uv∈T p̃v.

(ii) At every non-root v,

p̃v =
(
pv + (1− pv)ϵv(1− q̃v)

)
=

pv(1− ϵv)+ ϵv(1− qv)
1− qvϵv

.

(iii) At every node u,

q̃u = qu
1− ϵu

.

1− quϵu
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he probability of the empty profile is

(0) =
R∏

u=1

(1− q̃R)κR =
R∏

u=1

(
1− qu
1− quϵu

)κu
.

Let the input sample consist of the observed profiles for fam-
ilies f = 1, . . . , F : Ξ f

=

{
ξu = nf ,u : u ∈ L

}
. If the empty profiles

are unobservable, then the likelihood of a single family profile is
conditioned on the fact that at least one copy number is positive:

L∗(Ξ f ) = P
{
∀u ∈ LR : ξu = nf ,u

⏐⏐⏐ ∃u ∈ LR : ξu ̸= 0
}
=

L(Ξ f )
1− L(0)

,

sing the uncorrected likelihoods L(Ξ ) without conditioning on
eing empty, and in particular the empty profile likelihood L(0)
rom Theorem 4. Applying the correction to the entire sample:

∗
=

F∏
f=1

L∗(Ξ f ) =

∏F
f=1 L(Ξ

f )

(1− L(0))F
. (12)

he correction of Eq. (12) is akin to Felsenstein’s likelihood cor-
ection formula for restriction site evolution (Felsenstein, 1992).

.4. Computing the profile likelihood

Since the ancestors’ copy number {ξu = n} may be possible
or all nonnegative integers n, the likelihood recurrences of (10)
nvolve infinite sums for Ku, and infinitely many Cu(n). We can,
owever, factor out the histories with parallel losses for a finite
alculation. Define ξ̃u at every ancestral node u as the number of
opies that are not lost simultaneously in all descendant lineages
o Lu. Let η̃u denote the number of surviving ancestral copies:
hose that are not lost either on the edge leading to u or in
he subtree Tu. In other words, the ancestral copy numbers η̃
nd η̃ count only the progenitors of extant copies at the leaves,
s opposed to the ancestors’ copy numbers ξ, η that count all
omologs in the ancestors’ genomes. See Fig. 2 for an illustration.
efine ϵu, p̃v and q̃u as in Theorem 4. Since copies are extinct
ndependently with probability ϵu, for 0 ≤ ℓ ≤ n, P

{
ξ̃u = ℓ

⏐⏐
u = n

}
=

(n
ℓ

)
(1− ϵu)ℓ(ϵu)n−ℓ.

heorem 5 (Likelihood Computation). Given a profile Ξ , define the
onditional likelihoods

˜u(s) = P
{
Ξu

⏐⏐ η̃u = s
}

and C̃u(ℓ) = P
{
Ξu

⏐⏐⏐ ξ̃u = ℓ}
t all nodes u. In particular, the profile likelihood is L(Ξ ) = K̃R(0)
t the root R. Define the sum of observed leaf copy numbers within
very subtree: mu =

∑
v∈Lu

nv .

(i) For all s > mu, K̃u(s) = 0, and for all ℓ > mu, C̃u(ℓ) = 0.
(ii) At every node u, for all 0 ≤ s ≤ mu,

K̃u(s) =
mu∑
ℓ=s

C̃u(ℓ)×
(
κu + ℓ− 1
ℓ− s

)
(1− q̃u)κu+s(q̃u)ℓ−s. (13)

(iii) If u is a leaf, then C̃u(ℓ) = {ℓ = nu}. If u is an ancestral
node with children uv, uw ∈ T , then for all 0 ≤ ℓ ≤ mu =

mv +mw ,

C̃u(ℓ) =
min{ℓ,mv}∑

s=0

K̃v(s)× K̃ ℓw(ℓ− s)

×

(
ℓ

s

)( 1− p̃v
1− p̃v p̃w

)s( p̃v − p̃v p̃w
1− p̃v p̃w

)ℓ−s
(14)

with K̃ ℓw(ℓ) = K̃w(ℓ), and, for all 0 ≤ d < ℓ,

K̃ ℓ (d) = (1− p̃ )× K̃ ℓ (d+ 1)+ p̃ × K̃ ℓ−1(d). (15)
w w w w w w
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Note that Eq. (13) also applies to a duplication-loss (λu, µu >

) model with no gain (κu = 0). Then, since ξ̃u is the sum of s = η̃u
eometric distributions, it has a negative binomial distribution
ith parameters s and q̃. So, K̃u(0) = C̃u(0), and for all 1 ≤ s ≤ mu,

˜u(s) =
mu∑
ℓ=0

(
ℓ− 1
ℓ− s

)
(1− q̃u)sq̃ℓ−su .

on-binary phylogeny
A degenerate phylogeny T represents the parent–child rela-

ionships in a non-binary rooted tree. In such a phylogeny, the
ncestral nodes may have 2 or more children. In practice, it makes
ense to put multifurcating nodes at deep ancestors to represent
he ambiguity of resolving short edges, and a ternary root is
ommon if the phylogeny was derived from an unrooted tree.
he likelihood recurrences of Theorem 5 can accommodate any
-ary node, by considering survival in 1, 2, 3, . . . d child lineages
ncrementally (for any child ordering). More specifically, a d-
ry node can be resolved arbitrarily into a series of bifurcations
y keeping the distribution parameters on the edges leading to
he d leaves, and 0-length inner edges (thus with p = q = 0).
heorem 6 uses a straightforward resolution into a right-leaning
aterpillar tree.

heorem 6 (Likelihood Recurrences for Multifurcating Node). Let u
e a node in a degenerate phylogeny with d ≥ 2 distinct children
v1, . . . , uvd ∈ T enumerated in any order. Let ϵu,−i =

∏d
j=i p̃vj

or i = 1, . . . , d, so that ϵu = ϵu,−1. Define the likelihoods C̃−iu (ℓ)
nd K̃ ℓvi..d (s) conditioned on s surviving copies in the subtrees of

i, vi+1, . . . , vd:

˜−d
u (ℓ) = Kvd (ℓ) {0 ≤ ℓ ≤ mvd} (16a)

nd, for all 0 < i ≤ d and for all 0 ≤ ℓ ≤ mvi−1 + · · · +mvd

˜−(i−1)
u (ℓ) =

min{ℓ,mvi−1 }∑
s=0

K̃vi−1 (s)× K̃ ℓvi..d (ℓ− s)

×

(
ℓ

s

)(
1− p̃vi−1

1− ϵu,−(i−1)

)s( p̃vi−1 − p̃vi−1ϵu,−i
1− ϵu,−(i−1)

)ℓ−s
,

(16b)

with

K̃ ℓvi..d (ℓ) = C̃−iu (ℓ) (16c)

K̃ ℓvi..d (k) = (1− ϵu,−i)K̃ ℓvi..d (k+ 1)+ ϵu,−iK̃ ℓ−1vi..d
(k) {0 ≤ k < ℓ}

(16d)

hen C̃u(ℓ) = C̃−1u (ℓ).

roof. Omitted. □

artial genomes
An incomplete genome at a leaf u is characterized by the

raction (1 − ϵu) of the genome that is annotated. Assuming a
imple model of randomly missing copies, we have{
ξ̃u = k

⏐⏐⏐ ξu = n
}
=

(
n
k

)
(1− ϵu)k(ϵu)n−k,

here ξ̃ is the number of annotated copies, and ξ is the true copy
umber in the complete genome. In other words, the recurrences
f Theorems 5 for the likelihood and 4 for the empty profile
emain the same, with the only change that q̃u ̸= qu at such a leaf
ith ϵ > 0. Without constraints, however, the trio

(
p , q , ϵ

)
is
u u u u
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= pu + (1− pu)ϵu
1− qu
1− quϵu

q = qu
1− ϵu

1− quϵu
ϵ = 0,

produce the exact same distribution at u as (pu, qu, ϵu).

3.5. Posterior probabilities for ancestral copy numbers

Let Ξ = {ξv = nv : v ∈ L} be an arbitrary profile of copy num-
bers observed at the leaves. Theorem 5 provides the recurrences
for the conditional likelihoods C̃u and K̃u of the partial profile Ξu
conditioned on the ancestral copies ξ̃u and η̃u, respectively. Define
the complementary outside likelihoods

B̃u(ℓ) = P{Ξ−Ξu, ξ̃u = ℓ} and J̃u(s) = P{Ξ−Ξu, η̃u = s}, (17)

where Ξ − Ξu =
{
ξv = nv : v ∈ L − Lu

}
denotes the profile

outside the subtree rooted at node u.

Theorem 7 (Outside Likelihoods). Let Ξ = {ξv = nv : v ∈ L} be
an arbitrary profile, and define the outside likelihoods as in Eq. (17).
The following recurrences hold.

(i) At the root, J̃R(0) = 1 and J̃R(s) = 0 for s > 0.
(ii) At any node u, for all 0 ≤ ℓ ≤ mu,

B̃u(ℓ) =
ℓ∑

s=0

J̃u(s)×
(
κu + ℓ− 1
ℓ− s

)
(1− q̃u)κu+s(q̃u)ℓ−s. (18)

(iii) At every non-root node v with parent u and sibling w (i.e,
uv, uw ∈ T), for all 0 ≤ s ≤ mv ,

J̃v(s) =
mu∑
ℓ=s

B̃u(ℓ)× K̃ ℓw(ℓ− s)

×

(
ℓ

s

)( 1− p̃v
1− p̃v p̃w

)s( p̃v − p̃v p̃w
1− p̃v p̃w

)ℓ−s
. (19)

Theorem 7 with Theorem 5 deliver the posterior probabilities
n computable forms.

orollary 8 (Posterior Probabilities). Fix an arbitrary profile Ξ and
et C̃u, K̃u, B̃u, J̃u denote the inside and outside likelihoods at every
ode u.

(i) The profile likelihood can be computed by either formulas

L(Ξ ) = P{Ξ} =
mu∑
ℓ=0

B̃u(ℓ)× C̃u(ℓ) =
mu∑
s=0

J̃u(s)× K̃u(s). (20)

(ii) The posterior distribution of ξ̃u is P
{
ξ̃u = ℓ

⏐⏐ Ξ
}
=

B̃u(ℓ)×C̃u(ℓ)
L(Ξ ) .

(iii) The posterior distribution of η̃u is P
{
η̃u = s

⏐⏐ Ξ}
=

J̃u(s)×K̃u(s)
L(Ξ ) .

3.6. Partial derivatives of the likelihood

Suppose that we are interested in the corrected likelihood for
a sample of family profiles {Ξ f

: f = 1, . . . , F}. By Eq. (12), the
erivative of the corrected log-likelihood, with respect to any
istribution parameter θ is

∂

∂ θ

(
ln L∗

)
=

( F∑
f=1

L′(Ξ f )
L(Ξ f )

)
+ F

L′(0)
1− L(0)

, (21)

here L′(Ξ ) = ∂L(Ξ )
∂ θ

denotes the derivative of the uncorrected
rofile likelihood.
It is tempting to choose the optimized distribution param-

ters directly as κ and the survival parameters p̃ , q̃ for the
u u u
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maximization of the corrected log-likelihood ln L∗. They uniquely
etermine the parameters pu, qu, and, consequently, the edge-

specific rate parameters. The values of p̃ and q̃ are, however, not
arbitrary across the tree.

Theorem 9 (Unicity of Survival Parameters). Let T be a phylogeny
quipped with gain rates 0 < κu and survival parameters 0 <
˜u, q̃u < 1 at every node u. If, at every non-root ancestral node u,

˜u > (1− q̃u)
∏
uv∈T

p̃v, (22)

hen there exists a phylogenetic birth–death model on the same
hylogeny with distribution parameters 0 < pu, qu < 1 and same

gain rates κu. Otherwise, no solution exists with positive pu on every
dge.

In light of Theorem 9, we should aim at using the partial
erivatives with respect to p̃ and q̃ as an intermediate step toward
nferring the dependence on p and q. Using Corollary 8, we can
etermine the partial derivatives with respect to the survival
istribution parameters.

heorem 10 (Partial Derivatives of Then Profile Likelihood). Let Ξ
e an arbitrary phyletic profile.

(i) At every node 1 ≤ u ≤ R,

∂L(Ξ )
∂ q̃u

= L(Ξ )×
(

1
q̃u

E
[
ξ̃u

⏐⏐ Ξ]
−

( 1
q̃u
+

1
1− q̃u

)
E
[
η̃u

⏐⏐ Ξ]
−

1
1− q̃u

κu

)
.

(ii) At every non-root node 1 ≤ v < R,

∂L(Ξ )
∂ p̃v

= L(Ξ )×
(

1
p̃v

E
[
ξ̃u

⏐⏐ Ξ]
−

( 1
p̃v
+

1− ϵ
1− p̃v

)
E
[
η̃v

⏐⏐ Ξ])
,

where ϵ = ϵu/p̃v =
(∏

uw∈T p̃w
)
/p̃v is the product of p̃w

across the siblings with the same parent uv, uw ∈ T . (Simply
ϵ = p̃w if there is only one sibling uw ∈ T .)

(iii) The partial derivatives with respect to κu are, for all 1 ≤ u ≤
R,

∂L(Ξ )
∂κu

= L(Ξ )×
(
ln(1− q̃u)+

mu−1∑
i=0

P
{
ξ̃u > i

⏐⏐ Ξ}
− P

{
η̃u > i

⏐⏐ Ξ}
κu + i

)
.

(iv) The partial derivatives for the empty profile Ξ = 0 are
∂ L(0)
∂ q̃u

= −L(0)
κu

1− q̃u
,

∂ L(0)
∂ p̃u

= 0 and
∂ L(0)
∂ κu

= L(0)× ln(1− q̃u).

Note that using the posterior distributions from Corollary 8,
we readily obtain the posterior expectations

E
[
ξ̃u

⏐⏐ Ξ]
=

mu∑
ℓ=0

ℓ× P
{
ξ̃u = ℓ

⏐⏐ Ξ}
and

E
[
η̃u

⏐⏐ Ξ]
=

mu∑
s=0

s× P
{
η̃ξ = s

⏐⏐ Ξ}
,

as well as the distribution tails P
{
ξ̃u > i

⏐⏐ Ξ}
=

∑mu
ℓ=i+1 P

{
ξ̃u =

ℓ
⏐⏐ Ξ}

and P
{
η̃u > i

⏐⏐ Ξ}
=

∑mu
ℓ=i+1 P

{
η̃u = ℓ

⏐⏐ Ξ}
which

are needed in Theorem 10 and the following Corollary 11 that
combines Theorem 10 with Eq. (21).
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orollary 11 (Partial Derivatives of Sample Likelihood by Survival
arameters). Let ln L and ln L∗ denote the uncorrected and corrected
og-likelihood for a sample of family profiles {Ξ f

: f = 1, . . . , F}.
efine the posterior expected counts across the sample

Ñu =

F∑
f=1

E
[
ξ̃u

⏐⏐ Ξ f ] S̃u =
F∑

f=1

E
[
η̃u

⏐⏐ Ξ f ]
˜ >i
u =

F∑
f=1

P
{
ξ̃u > i

⏐⏐ Ξ f } S̃>i
u =

F∑
f=1

P
{
η̃u > i

⏐⏐ Ξ f }
t every node 1 ≤ u ≤ R.

(i) At every node 1 ≤ u ≤ R,

∂

∂ q̃u
ln L =

Ñu − S̃u
q̃u

−
S̃u + κuF
1− q̃u

∂

∂ q̃u
ln L∗ =

Ñu − S̃u
q̃u

−
S̃u + κu F

1−L(0)

1− q̃u

(ii) For a non-root node 1 ≤ v < R, let u be its parent:

∂

∂ p̃v
ln L =

∂

∂ p̃v
ln L∗ =

Ñu − S̃v
p̃v

−
(1− ϵ)S̃v
1− p̃v

=
Ñu − (1− ϵu)S̃v

p̃u
−

(1− ϵu)S̃v
1− p̃v

where ϵ =
(∏

uw∈T p̃w
)
/p̃v .

(iii) At every node 1 ≤ u ≤ R,

∂

∂κu
ln L = F ln(1− q̃u)+

mu−1∑
i=0

Ñ>i
u − S̃>i

u

κu + i

∂

∂κu
ln L∗ = F

ln(1− q̃u)
1− L(0)

+

mu−1∑
i=0

Ñ>i
u − S̃>i

u

κu + i

Powerful numerical algorithms for function maximization
(conjugate gradient and variable metric methods like Broyden–
Fletcher–Goldfarb–Shanno) exploit the gradient for quick conver-
gence to optimum. The likelihood optimization for a phylogenetic
birth–death model can rely on the computation of both the
likelihood (Theorem 5), and the gradient with respect to the
parameters κu, pu, qu across the tree. By Theorem 1, the proba-
bilistic model is uniquely determined by the parameter set, up to
equivalent rate scalings. Maximizing the likelihood with respect
to the survival distribution parameters p̃ and q̃ from Theorem 10
is not straightforward because Theorem 9 imposes monotonicity
constraints between parameters on adjoining edges. Let u be
an arbitrary node at some depth d (root is at depth 0). For a
distribution parameter such as θv = pv or θv = qv ,

∂L(Ξ )
∂θv

=

R∑
u=1

∂L(Ξ )
∂ q̃u

∂ q̃u
∂θv
+

R∑
u=1

∂L(Ξ )
∂ p̃u

∂ p̃u
∂θv

,

y the chain rule. In particular, pv and qv influence p̃u and q̃u at
nodes u along the path between the root and v. Consequently,
the above sums include only the ancestors of v, and the partial
derivatives can be computed in a preorder traversal. We state the
procedure in a generic theorem about recovering the derivatives
of any function Φ of the distribution parameters.

Theorem 12 (Gradient Computation). Let Φ be an arbitrary differ-
entiable function of the survival parameters

{
p̃u, q̃u

}R
u=1. Let Φ

(θv ) =
∂ f
∂θv

denote the partial derivative with respect to any distribution
parameter θv . The partial derivatives Φ(pv ) (for non-root v), Φ(qv )

(for any v) and Φ(ϵv ) (for non-leaf v) can be computed in a preorder
traversal by the following recurrences.
 b
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(i) At the root v = R,

Φ(qR) =
1− ϵR

(1− qRϵR)2
Φ(q̃R) (23a)

Φ(ϵR) =
1− qR

(1− qRϵR)2

(
−qRΦ (q̃R)

)
. (23b)

(ii) At every non-root node 1 ≤ v < R,

Φ(pv ) =
1− ϵv

1− qvϵv

(
Φ (p̃v ) + ϵΦ(ϵu)

)
(24a)

Φ(qv ) =
1− ϵv

(1− qvϵv)2

(
Φ (q̃v ) − (1− pv)ϵv

(
Φ(p̃v ) + ϵΦ(ϵu)

))
(24b)

and, if v is not a leaf,

Φ(ϵv ) =
1− qv

(1− qvϵv)2

(
(1− pv)

(
Φ(p̃v ) + ϵΦ(ϵu)

)
− qvΦ(q̃v )

)
(24c)

with the parent u and

ϵ =
∏

w : uw∈T

{w ̸= v}p̃w =
ϵu

p̃v
.

(For a binary node, ϵ = p̃w with the sole sibling w).

Theorem 12 can be employed with the individual family pro-
files using Φ = L(Ξ f ) and plugging L′(Ξ f ) = Φ (θ ) into the
corrected log-likelihood formula of (21) for each f = 1, . . . , F in
he sum, as well as for L′(0). But it may be more efficient to carry
ut the procedure only once at the end, using Φ = ln L∗ directly
ith its partial derivatives from Corollary 11. For the purposes of

ikelihood maximization, use a parametrization with the logistic
nd exponential functions as

u =
1

1+ e−αu
qu =

1
1+ e−βu

κu = eωu

with unconstrained real-valued parameters

αu = ln
pu

1− pu
βu = ln

qu
1− qu

ωu = ln κu.

The partial derivatives are computed by the chain rule as

Φ(αu) = Φ (pu) ∂pu
∂αu
= pu(1− pu)Φ(pu) {0 < u < R}

Φ(βu) = Φ(qu) ∂qu
∂βu
= qu(1− qu)Φ (qu) {0 < u ≤ R}

Φ(ωu) = Φ(κu) ∂κu

∂ωu
= κuΦ

(κu) {0 < u ≤ R}

3.7. Likelihoods in the no-duplication model

In the case of λv = 0 on all edges uv ∈ T , the joint distribution
f the random variables multiplies Poisson and binomial masses:

{ξ1 = n1, . . . , ξR = nR, η1 = s1, . . . , ηR−1 = sR−1}

= P{ξR = nR} ×
∏
uv∈T

((
nu

sv

)
(1− pv)sv (pv)nu−sv × e−rv

(rv)nv−sv

(nv − sv)!

)
.

his time we assume a Poisson distribution at the root: P{ξR =
} = e−r rn/(n!), and, as before sR = 0 for retrieving the likelihood
(Ξ ) = KR(0). The recurrences for the likelihood and the empty
rofile are adjusted accordingly. In particular,

u(s) =
∞∑
k=0

e−ru
(ru)k

k!
× Cu(s+ k), (25)

ut the recurrence for C stays the same.
u
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heorem 13 (Empty Profile in the No-Duplication Model). Define ϵu
s in Theorem 4, with p̃v =

(
pv + (1 − pv)ϵv

)
at every non-root

ode v, and r̃u = ru
(
1− ϵu

)
at every node u. The probability of the

mpty profile is

(0) =
R∏

u=1

e−r̃u =
R∏

u=1

exp
(
−ru(1− ϵu)

)
.

The likelihood computations of Theorems 5 and 7 adapt easily
o the no-duplication model, with ξ̃ and η̃ defined as before. Two
recurrences change: at every node u, and for all 0 ≤ s ≤ mu,

K̃u(s) =
mu∑
ℓ=s

C̃u(ℓ)× e−r̃u
(r̃u)ℓ−s

(ℓ− s)!
,

nd, for all 0 ≤ ℓ ≤ mu,

B̃u(ℓ) =
ℓ∑

s=0

J̃u(s)× e−r̃u
(r̃u)ℓ−s

(ℓ− s)!
.

Consequently, the derivatives of the profile likelihood are

∂L(Ξ )
∂ r̃u

=
∂

∂ r̃u

( mu∑
ℓ=0

B̃u(ℓ)× C̃u(ℓ)
)

=

∑
0≤s≤ℓ≤mu

J̃u(s) × C̃u(ℓ)× e−r̃u
(r̃u)ℓ−s

(ℓ− s)!

(
ℓ− s
r̃u
− 1

)

= L(Ξ )×
(
E
[
ξ̃u

⏐⏐ Ξ]
− E

[
η̃u

⏐⏐ Ξ]
r̃u

− 1
)
.

t every node 1 ≤ u ≤ R. In particular, for the empty profile
= 0,

∂L(0)
∂ r̃u
=

∂

∂ r̃u

( R∏
v=1

e−r̃v
)
= −L(0).

by Theorem 13. Substituting into Eq. (21) for the derivatives of
corrected log-likelihood on a sample of family profiles gives

∂(ln L∗)
∂ r̃v

=
Ñu − S̃u

r̃u
−

F
1− L(0)

.

he analogue of Theorem 12 is the following claim.

heorem 14 (Gradient in the No-Duplication Model). Let Φ be
n arbitrary differentiable function of the distribution parameters
p̃u, r̃u

}R
u=1 in a no-duplication model. Let Φ(θv ) =

∂ f
∂θv

denote the
artial derivative with respect to any distribution parameter θv . The
artial derivatives Φ(pv ) (for non-root v), Φ (rv ) (for any v) and Φ(ϵv )

for non-leaf v) can be computed in a preorder traversal by the
ollowing recurrences.

(i) At the root v = R,

Φ (rR) =
(
1− ϵR

)
Φ(r̃R) (26a)

Φ (ϵR) = −rRΦ (r̃R). (26b)

(ii) At every non-root node 1 ≤ v < R,

Φ (pv ) =
(
1− ϵv

)(
Φ (p̃v ) + ϵΦ (ϵu)

)
(27a)

Φ(rv ) =
(
1− ϵv

)
Φ(r̃v ). (27b)

and, if v is not a leaf,

Φ (ϵv ) =
(
1− pv

)(
Φ (p̃v ) + ϵΦ(ϵu)

)
− rvΦ(r̃v ) (27c)

with the parent u and

ϵ =
∏
{w ̸= v}p̃w =

ϵu

p̃
.

w : uw∈T v
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Note that the different duplication models can be used in the
same tree: some edges can have λ = 0, and some λ > 0. In the
recurrences for K̃v and B̃v , either the Poisson (if λv = 0) or the
Pólya (if λv > 0) formulas apply, and the computed derivatives
are ∂rv or ∂κv , respectively.

3.8. Algorithmic complexity

The set of conditional likelihoods C̃u(ℓ) and K̃u(s) for a given
rofile Ξ can be computed in a postorder traversal of the phy-
ogeny using Theorem 5. The recurrences for K̃u(s) from (13) are
traightforward to implement by embedded loops over 0 ≤ s ≤
≤ mu. Define

u(s, t) =
(
κu + s+ t − 1

t

)
(1− q̃u)κu+s(q̃u)t .

// Computing K̃u(s) for all s
1 for ℓ← 0, 1, . . . ,mu

2 for s← 0, 1, . . . , ℓ
3 K̃u(s)← K̃u(s)+ C̃u(ℓ)× hu(s, ℓ− s)

For the recurrence of (13), compute K s+t
w (s) looping over t and s

n the opposite direction. Let

v(s, t) =
(
s+ t
s

)(
1− p̃v

1− p̃v p̃w

)s( p̃v − p̃v p̃w
1− p̃v p̃w

)t

.

// Computing C̃u(ℓ) for all ℓ at u with children uv, uw ∈ T
1 for t ← mw,mw − 1, . . . , 0
2 K t

w(t)← Kw(t)
3 for s← 0, 1, . . . ,mv

4 C̃u(s+ t)← C̃u(s+ t)+ K̃v(s)× K̃ s+t
w (t)× gv(s, t)

5 K (s+1)+t
w (t)← (1− p̃w)K̃ (s+1

w (t + 1)+ p̃wK̃ s+t
w (t)

Note that gu(s, t) and hu(s, t) can be computed in constant time.
or instance, ln hu(s, 0) = (κu + s) ln(1− q̃u), and for t > 0,

n hu(s, t) = (κu + s) ln(1− q̃u)+ t ln q̃u
+ lnΓ (κu + s+ t)− lnΓ (κu + s)− lnΓ (t + 1)

ith the Gamma function Γ (z) =
∫
∞

0 xz−1e−x dx (so that Γ (t +
) = t!).
The outside likelihoods B̃u(ℓ) and J̃u(s) from Theorem 7 are

omputed in a preorder traversal. Concomitantly, the posterior
istributions for ancestral copy numbers ξ̃u and η̃u are obtained
y Corollary 8 in the same traversal. In addition, during the same
reorder traversal, the partial derivatives can be computed with
espect to all p̃u, q̃u, κu parameters. In order to get the gradient of
he corrected log-likelihoodΦ = ln L∗ over a sample of F families,
irst compute the partial derivatives Φ (p̃u), Φ (q̃u), and Φ(κu) of the
orrected log-likelihood from the derivatives for the individual
rofile likelihoods using Eq. (21). Subsequently, the recurrences
f Theorem 12 compute all Φ(pu) and Φ (qu) in a single preorder
raversal. The running time is quadratic in the total number of
bserved copies.

heorem 15 (Running Time for Likelihood Computation). Let Ξ =
ξu = nu : u ∈ L} be an arbitrary profile across L = |L| leaves. Let
¯ =

1
L

∑L
u=1 nu be the average of the leaf copy numbers within the

profile, and let h be the phylogeny’s height. The profile likelihood and
the posterior distributions for ξ̃u and η̃u at all ancestral nodes u can
be computed in O

(
hL(Ln̄2

+ 1)
)
time.

The height h = O(log L) for almost all random phylogenies in
he Yule model (where the tree is generated by a birth process), as
ell as in Aldous’ beta-splitting model (Aldous, 1996) (when β >
1); in the biologically less plausible uniform and unbalanced
eta-splitting models, h = O(

√
L).
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. Conclusion

We report fast algorithms for likelihood, posterior and gradi-
nt calculations for linear birth–death processes on a phylogeny.
or a tree with L leaves and a profile with Ln̄ total copies, the
ikelihood computations take O(hL2n̄2) time, which matches pre-
ious algorithms’ running time (Csűrös and Miklós, 2006; Csűrös
nd Miklós, 2009). Imposing a maximum ancestral copy num-
er ξ̃ ≤ nmax to truncate the summations (in Theorems 5 and 7)
ields Θ(Ln2

max) running time. Other methods (Hahn et al., 2005;
wasaki and Takagi, 2007; Spencer et al., 2006; Ames et al., 2012;
ukunaga and Iwasaki, 2021) that adapt Felsenstein’s peeling
lgorithm with maximum ancestor copy number ξ ≤ nmax have
he same asymptotic running time, provided that transition prob-
bilities can be computed easily. If transition probabilities are not
eadily available, however, then the exponentiation of the rate
atrix on all edges takes Θ(Ln3

max) time, restricting applicability
o smaller families.

A subtle, but important feature of our methods is that they
ncorporate observation bias for empty profiles. Neglecting the
ikelihood correction may be problematical, because it inflates the
ppearance of conservation, and thus results in biased ancestral
econstruction and parameter inference.

In our approach, posterior distributions for ancestral copy
umbers are computed alongside the likelihoods. To our knowl-
dge, the gradient computation algorithm (Theorem 12) is en-
irely novel of its kind. It extracts the partial derivatives from the
osterior copy number distributions in linear time, necessitating
single evaluation of the likelihood. In contrast, approximate
radient calculation (implemented in Count, Csűrös, 2010, for ex-
mple) for Θ(L) distribution parameters entails Θ(L) evaluations
f the likelihood.
Our mathematical framework for phylogenetic gain-loss-

uplication models provides the clean decomposition of Eq. (9),
nvolving a network of dependent random variables. The ele-
entary decomposition can be employed with standard Bayesian
nd likelihood methods, leading to efficient algorithms for a
otoriously hard bioinformatics problem.
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ppendix

We give the proofs for Theorem 2, Corollary 3, Theorems 4–
, Corollary 8, Theroems 9, 10, Corollary 11 and Theorem 12 in
ppendices A.1–A.7. The results about the no-duplication model
re proven in Appendix A.8. Finally, Appendix A.9 discusses the
roof of Theorem 15 for the running time. Table 1 shows the
otations in the proofs.

.1. Proof of Theorem 2

roof. First, suppose that λ > 0. Decompose ξ (t) as in (5). For
(0) = n,

(t) = χ (t)+
n∑
ζi(t)
i=1

89
Table 1
Notations for phylogenetic birth-and-death model.
T Phylogeny (binary tree) with integer-indexed nodes
R Number of nodes in the tree (also the root’s index)
u, v, w Nodes in the tree
Tu Subtree rooted at node u
L and Lu Leaf set for T and Tu
ξu Copy number at node u
ηv Parental copies surviving at node v
χ, ζi Xenolog and inparalog copies (Fig. 1)
κ Relative gain rate (from outside sources)
γ Relative gain rate in no-duplication model
λ Per-copy duplication rate
µ Per-copy loss rate
t Edge length (time)
qu Duplication parameter on edge leading to node u
pu Loss parameter on edge leading to node u
ru Gain parameter in no-duplication model
hn(t) Point mass function for xenolog copy number at time t
gn(t) Point mass function for inparalog copy number at time t
Ξ Phylogenetic profile (vector of non-negative copy

numbers at the leaves)
Ξu Profile in the subtree Tu
Ξ f Profile for family f
ϵu Extinction probability for a copy at node u (Theorem 4)
p̃u Survival loss parameter (Theorem 4)
q̃u Survival duplication parameter (Theorem 4)
ξ̃u Ancestral copy number (non-extinct copies)
η̃v Surviving ancestral copies
nw Copy number observed at leaf w
mu Sum of copy numbers at the leaves Lu below node u

where χ follows Pólya with parameters (κ, q), and ζi are iid
hifted geometric with parameters (p, q). Now define the random
ariable η(t) as the number of surviving copies

(t) =
n∑

i=1

{ζi(t) > 0}.

Since ζi are independent with P{ζi(t) = 0} = p,

P
{
η(t) = s

⏐⏐⏐ ξ (0) = n
}
=

(
n
s

)
(1− p)spn−s. (28)

ince the ζi = 0 are immaterial in the sum, we can condition on
η(t):

P
{
ξ (t) = m

⏐⏐⏐ η(t) = s, ξ (0) = n
}
= P

{
ξ (t) = m

⏐⏐⏐ η(t) = s
}

= P{χ + ζ ′1 + · · · + ζ
′

s = m},

here ζ ′1− 1 are iid random variables following a Pólya distribu-
ion with parameter 1:

{ζ ′i − 1 = k} = (1− q)qk =
(
1+ k− 1

k

)
(1− q)1qk.

ooking specifically at the generator functions:

0(z) =
∞∑
i=0

P{χ = i}z i =
( 1− q
1− qz

)κ
Fi(z) =

∞∑
i=0

P{ζ ′i = i}z i =
z(1− q)
1− qz

so

F (z) =
∞∑
m=s

P
{
ξ (t) = m

⏐⏐⏐ η(t) = s
}
zm

= F0(z)
s∏

i=1

Fi(z) = zs
( 1− q
1− qz

)κ+s
.
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ence, ξ (t) − η(t) follows a Pólya distribution with parameter
κ + η(t)), and the same tail parameter q. Now,{
ξ (t) = m

⏐⏐⏐ ξ (0) = n
}

=

∑
s

P
{
ξ (t) = m

⏐⏐⏐ η(t) = s
}
P
{
η(t) = s

⏐⏐⏐ ξ (0) = n
}

=

∑
s

P
{
ξ (t)− η(t) = m− s

⏐⏐⏐ η(t) = s
}
P
{
η(t) = s

⏐⏐⏐ ξ (0) = n
}

=

min{n,m}∑
s=0

(
n
s

)
(1− p)spn−s

(
(κ + s)+ (m− s)− 1

m− s

)
× (1− q)κ+sqm−s,

as claimed.
When λ = 0, define χ (t) and ζi(t) for xenologs and inparalogs:

P{χ (t) = k} = e−r
rk

k!
,

nd ζi(t) for i > 0 are Bernoulli random variables with

{ζi(t) = 0} = p P{ζi(t) = 1} = 1− p.

We condition on η(t) =
∑n

i=1{ζi(t) > 0} =
∑n

i=1 ζi(t) with
the same binomial distribution as in (28): now ξ (t) − η(t) has
Poisson distribution. □

Proof of Corollary 3. By Theorem 2, the generating function for
the transition probabilities is

Gn(z) =
∞∑

m=0

w(m | n)zm

=

( 1− q
1− qz

)κ(
p+ (1− p)

(1− q)z
1− qz

)n

=

( 1− q
1− qz

)κ(p+ z(1− p− q)
1− qz

)n

.

The generating function satisfies

Gn(z)× (1− qz) = Gn−1(z)× (p+ z(1− p− q)).

Noting that zGn(z) =
∑
∞

m=1w(m − 1 | n)zm, the equality of the
coefficients implies that

w(m | n)− qw(m− 1 | n)
= pw(m | n− 1)+ (1− p− q)w(m− 1 | n− 1),

which gives the stated recurrence. □

A.2. Proof Theorem 4

Proof. Let Cu, Ku denote the likelihoods for the empty profile:

Cu(n) = P
{
∀v ∈ Lu : ξv = 0

⏐⏐⏐ ξu = n
}

Ku(s) = P
{
∀v ∈ Lu : ξv = 0

⏐⏐⏐ ηu = s
}
.

Let Qu denote the product of (1 − q̃v)κv across all edges in the
subtree of u: Qu = 1 at a leaf, and at an ancestral node u with
children v,w

Qu =
(
Qv(1− q̃v)κv

)(
Qw(1− q̃w)κw

)
.

We prove that for all nodes u,

Ku(s) = Qu × (ϵu)s(1− q̃u)κu+s Cu(n) = Qu × (ϵu)n.

(With 00
= 1 and 0n

= 0 for n > 0.) In particular, at the root R,
the probability of the empty profile is

L(0) = KR(0) = QR(1− q̃R)κR =
R∏(

1− qu
1− q ϵ

)κu
.

u=1 u u
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We prove the claim by induction in the node height, starting with
the leaves.

Base case. At a leaf u (height 0), we have Cu(0) = 1 and Cu(n) = 0
for n > 0. Since ϵu = 0, Cu(n) = 0n

= ϵnu holds at all n.
At any node v, with κ = κv, q = qv, ϵ = ϵv,Q = Qv and

q̃ = q 1−ϵ
1−qϵ :

Kv(s) =
∞∑
n=s

(
κ + n− 1

n− s

)
(1− q)κ+sqn−sCv(n)

= Q
∞∑
n=s

(
κ + n− 1

n− s

)
(1− q)κ+sqn−sϵn

= Q ϵs
(

1− q
1− qϵ

)κ+s
= Q ϵs(1− q̃)κ+s.

nduction. Suppose u is an ancestral node with two non-null
children v and w. The height of u is (h + 1) for some h ≥ 0:
suppose that the induction claim holds for all nodes at heights
up to h. Both children have heights at most h, so

Kv(s) = Qv(1− q̃v)κv (ϵv(1− q̃v))s

Kw(s) = Qw(1− q̃w)κw (ϵw(1− q̃w))s.

Therefore,

Cu(n) =
( n∑

s=0

(
n
s

)
(1− pv)s(pv)n−sKv(s)

)

×

( n∑
s=0

(
n
s

)
(1− pw)s(pw)n−sKw(s)

)
=

(
Qv(1− q̃v)κv

)(
pv + (1− pv)ϵv(1− q̃v)

)n
×

(
Qw(1− q̃w)κw

)(
pw + (1− pw)ϵw(1− q̃w)

)n
= Qu

(
p̃v p̃w

)n
= Qu(ϵu)n. □

.3. Proof of Theorem 5

roof.

(i) Given the definition of η̃u and ξ̃u, the Pigeonhole Principle
implies that their maximal value is mu =

∑
v∈Lu

nv , the
sum of copy numbers at the leaves descending from u.

(ii) By Eq. (8b), the generating function for the conditional
distribution of ξ̃u | η̃u is

F̃s(z) =
∞∑
ℓ=0

P
{
ξ̃u = ℓ

⏐⏐⏐ η̃u = s
}
zℓ

=

∞∑
n=s

(
κu + n− 1

n− s

)
(1− qu)κu+s(qu)n−s

n−s∑
i=0

(
n− s

i

)
× (1− ϵu)i(ϵu)n−s−izs+i

= zs
∞∑
k=0

(
κu + s+ k− 1

k

)
(1− qu)κu+s(qu)k

× (ϵu + (1− ϵu)z)k

= zs
( 1− q̃u
1− q̃uz

)κu+s
,

where we used 1− q̃u = 1−qu
1−quϵu

. Hence, (ξ̃u−η̃u) has a Pólya
distribution with parameters (κu + η̃u) and q̃u:

P
{
ξ̃u = ℓ

⏐⏐⏐ η̃u = s
}
=

(
κi + ℓ− 1
ℓ− s

)
(1− q̃u)κu+s(q̃u)ℓ−s.

(29)
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Now we have the recurrences for K̃u:

K̃u(s) = P
{
Ξu

⏐⏐⏐ η̃u = s
}

=

∑
ℓ≥s

C̃u(ℓ)×
(
κu + ℓ− 1
ℓ− s

)
(1− q̃u)κu+s(q̃u)ℓ−s,

as claimed.
(iii) The ξ̃u = ℓ ancestral copies get sorted in the two child

lineages with probabilities (1 − p̃v)p̃w/(1 − p̃v p̃w), (1 −
p̃w)p̃v/(1 − p̃v p̃w), and (1 − p̃v)(1 − p̃w)/(1 − p̃v p̃w) as
surviving only on the left v, only on the right w, or on both
sides. Hence,

P
{
η̃v = s

⏐⏐⏐ ξ̃u = ℓ} = (
ℓ

s

)( 1− p̃v
1− p̃v p̃w

)s(
p̃v

1− p̃w
1− p̃v p̃w

)ℓ−s
(30)

P
{
η̃w = s

⏐⏐⏐ ξ̃u = ℓ} = (
ℓ

s

)( 1− p̃w
1− p̃v p̃w

)s(
p̃w

1− p̃v
1− p̃v p̃w

)ℓ−s
for 0 ≤ s ≤ ℓ. Define ψ̃u as the ancestral copies from ξ̃u
that survive in both child lineages:

P
{
ψ̃u = k

⏐⏐⏐ η̃v = s
}
=

(
s
k

)
(1− p̃w)k(p̃w)s−k (31)

P
{
ψ̃u = k

⏐⏐⏐ η̃w = s
}
=

(
s
k

)
(1− p̃v)k(p̃v)s−k

for 0 ≤ k ≤ s. The two random variables η̃v, η̃w are not
independent when conditioned on ξ̃u, since η̃w = ξ̃u− η̃v+
ψ̃u:

P
{
η̃v = s, η̃w = t

⏐⏐⏐ ξ̃u = ℓ}
= P

{
η̃v = s

⏐⏐⏐ ξ̃u = ℓ}P{
ψ̃u = (s+ t)− ℓ

⏐⏐⏐ η̃v = s
}
.

Combining (30) and (31) gives us the recurrence for C̃u:

C̃u(ℓ) = P
{
Ξu

⏐⏐⏐ ξ̃u = ℓ}
=

s,t≤ℓ∑
s+t≥ℓ

P
{
Ξv

⏐⏐⏐ η̃v = s
}

× P
{
Ξw

⏐⏐⏐ η̃w = t
}
P
{
η̃v = s, η̃w = t

⏐⏐⏐ ξ̃u = ℓ}
=

ℓ∑
s=0

(
K̃v(s)×

(
ℓ

s

)( 1− p̃v
1− p̃v p̃w

)s(
p̃v

1− p̃w
1− p̃v p̃w

)ℓ−s
×

s∑
k=0

K̃w(ℓ− s+ k)×
(
s
k

)
(1− p̃w)k(p̃w)s−k

)
.

The inner sum can be computed in O(1) amortized time by
dynamic programming: for all 0 ≤ d ≤ ℓ, let

K̃ ℓw(d) =
ℓ−d∑
k=0

K̃w(d+ k)×
(
ℓ− d
k

)
(1− p̃)kp̃ℓ−d−k,

with p̃ = p̃w , so that

C̃u(ℓ) =
ℓ∑

s=0

K̃v(s)× K̃ ℓw(ℓ− s)

×

(
ℓ

s

)( 1− p̃v
1− p̃v p̃w

)s( p̃v − p̃v p̃w
1− p̃v p̃w

)ℓ−s
The initial values are

K̃ ℓ (ℓ) = K̃ (ℓ).
w w
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Let s = ℓ− d. Since(
s
k

)
(1− p̃)kp̃s−k

= {k < s}p̃
(
s− 1
k

)
(1− p̃)kp̃(s−1)−k

+ {0 < k}(1− p̃)
(
s− 1
k− 1

)
(1− p̃)k−1p̃(s−1)−(k−1),

we have the recursions for d < ℓ:

K̃ ℓw(d)

=

ℓ−d∑
k=0

K̃w(d+ k)×
(
ℓ− d
k

)
(1− p̃)kp̃ℓ−d−k

= p̃
ℓ−d−1∑
k=0

K̃w(d+ k)
(
ℓ− d− 1

k

)
(1− p̃)kp̃ℓ−d−1−k

+ (1− p̃)
ℓ−d∑
k=1

K̃w(d+ k)
(
ℓ− d− 1
k− 1

)
× (1− p̃)k−1p̃(ℓ−d−1)−(k−1).

By setting d+ k = (d+ 1)+ (k− 1) in the second term,

K̃ ℓw(d) = p̃K̃ ℓ−1w (d)+ (1− p̃)K̃ ℓw(d+ 1). □

A.4. Proof of Theorem 7

Proof. At the root, J̃R(s) = P{η̃R = s} = {s = 0} by our model.
Let u be an arbitrary node, and let κ = κu, q̃ = q̃u. Using Eq. (29)
for ξ̃u|η̃u,

B̃u(ℓ) = P{Ξ −Ξu, ξ̃u = ℓ}

=

∑
s

P
{
Ξ −Ξu, ξ̃u = ℓ

⏐⏐⏐ η̃u = s
}
P{η̃u = s}

=

∑
s

P{Ξ −Ξu, η̃u = s}P
{
ξ̃u = ℓ

⏐⏐⏐ η̃u = s
}

=

∑
s

J̃u(s)
(
κ + ℓ− 1
ℓ− s

)
(1− q̃)κ+s(q̃)ℓ−s.

Now let uv ∈ T be a parent–child pair, and let uw ∈ T be the
ibling lineage (with v ̸= w). Since Ξ −Ξv = (Ξ −Ξu) ∪Ξw ,

˜
v(s) = P{Ξ −Ξv, η̃v = s}

=

∑
ℓ

P
{
Ξ −Ξv, η̃v = s

⏐⏐⏐ ξ̃u = ℓ}P{ξ̃u = ℓ}
=

∑
ℓ

P
{
Ξ −Ξu, ξ̃u = ℓ

}
× P

{
η̃v = s

⏐⏐⏐ ξ̃u = ℓ}
×

∑
t

P
{
η̃w = t

⏐⏐⏐ ξ̃u = ℓ, η̃v = s
}
P
{
Ξw

⏐⏐⏐ η̃w = t
}

=

∑
ℓ

B̃u(ℓ)×
(
ℓ

s

)( 1− p̃v
1− p̃v p̃w

)s( p̃v − p̃v p̃w
1− p̃v p̃w

)ℓ−s
× K̃ ℓw(ℓ− s),

where we used Eqs. (30) and (31) as in the proof of Theo-
rem 5. □

A.5. Proof of Theorem 9

Proof. First, define ϵu at all nodes using p̃: if u is a leaf, then
ϵu = 0, and at an ancestral node u, ϵu =

∏
uv∈T p̃v . Since all p̃u

are positive, ϵ > 0 at every ancestral node u.
u
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Let u be an arbitrary node and let q̃ = q̃u, p̃ = p̃u. Since
0 < (1−q̃)ϵu < 1, the equation q̃ = qu 1−ϵu

1−quϵu
has a unique positive

olution

u =
q̃

1− (1− q̃)ϵu
=

q̃
q̃+ (1− q̃)(1− ϵu)

< 1.

urthermore, the equation p̃ = pu+ (1−pu)ϵu(1− q̃) has a unique
solution

pu =
p̃− ϵu(1− q̃)
1− ϵu(1− q̃)

< 1.

ince ϵu =
∏

uv∈T p̃v , by the assumption of (22), pu > 0. If the
assumption is violated by p̃ < ϵu(1 − q̃), then pu < 0, which is
illegal.

Since 0 < pu < 1 and 0 < qu < 1 can be selected at
every node, Theorem 1 implies that a corresponding phylogenetic
birth–death model exists that is unique up to equivalent rate
scalings. □

A.6. Proof of Theorem 10

Proof. By Eqs. (20) and (18),
∂L(Ξ )
∂ q̃u

=

mu∑
ℓ=0

C̃u(ℓ)
∂ B̃u(ℓ)
∂ q̃u

=

mu∑
ℓ=0

C̃u(ℓ)
∂

∂ q̃u

( ℓ∑
s=0

J̃u(s)×
(
κu + ℓ− 1
ℓ− s

)
(1− q̃u)κu+s(q̃u)ℓ−s

)
.

o,
∂L(Ξ )
∂ q̃u∑
0≤s≤ℓ≤mu

C̃u(ℓ)× J̃u(s)

×

(
κu + ℓ− 1
ℓ− s

)
(1− q̃u)κu+s(q̃u)ℓ−s

(
ℓ− s
q̃u
−
κu + s
1− q̃u

)
. (32)

y Theorem 4, the empty profile likelihood is L(0) =
∏R

u=1(1 −
˜u)κu , so
∂ L(0)
∂ q̃u

= −L(0)
κu

1− q̃u
.

For derivatives with respect to p̃v on an edge between a non-
oot node v and its parent uv ∈ T , consider the recurrences of
heorems 5 and 6. Both can be written as

˜u(ℓ) =
ℓ∑

s=0

K̃v(s)× K̃ ℓ
−v(ℓ− s)×

(
ℓ

s

)(
1− p̃v
1− p̃vϵ

)s( p̃v − p̃vϵ
1− p̃vϵ

)ℓ−s
.

t a binary node u (Theorem 5), ϵ = p̃w with the sibling uw ∈ T ,
nd K̃ ℓ

−v(k) = K̃ ℓw(k). If u has more than 2 children v1, . . . , vd,
hen order them so that v is the first, and apply Theorem 6:
ϵ = ϵu,−2 =

∏d
j=2 p̃vj and K̃ ℓ

−v(k) = K̃ ℓv2..d (k) from Eq. (16b). Hence,
using Corollary 8,

∂L(Ξ )
∂ p̃v

=

mu∑
ℓ=0

B̃u(ℓ)
∂ C̃u(ℓ)
∂ p̃v

=

mu∑
ℓ=0

B̃u(ℓ)
min{ℓ,mu}∑

s=0

K̃v(s)× K̃ ℓ
−v(ℓ− s)

×
∂

((
ℓ
)(

1− p̃v
)s( p̃v − p̃vϵ

)ℓ−s)
.

∂ p̃v s 1− p̃vϵ 1− p̃vϵ
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Therefore,
∂L(Ξ )
∂ p̃v
=

∑
0≤s≤ℓ≤mu

B̃u(ℓ)× K̃v(s)× K̃ ℓ
−v(ℓ− s)

×

(
ℓ

s

)(
1− p̃v
1− p̃vϵ

)s( p̃v − p̃vϵ
1− p̃vϵ

)ℓ−s(
ℓ− s
p̃v
−

s(1− ϵ)
1− p̃v

)
. (33)

The derivatives for the empty profile likelihood are trivial, since
L(0) does not depend on any of the p̃v .

By Corollary 8 and Theorem 7,
∂ L(Ξ )
∂ κu

=

mu∑
ℓ=0

C̃u(ℓ)
ℓ∑

s=0

J̃u(s)
∂

∂κu

(
(1− q̃u)κu+s(q̃u)ℓ−s

(
κu + ℓ− 1
ℓ− s

))
.

ince

∂

∂κ

(
ln

(
κ + ℓ− 1
ℓ− s

))
=

∂
∂κ

(
κ+ℓ−1
ℓ−s

)(
κ+ℓ−1
ℓ−s

) ,

and

∂

∂κ

(
ln

(
κ + ℓ− 1
ℓ− s

))
=

ℓ−s−1∑
i=0

∂ ln(κ + s+ i)
∂κ

=

ℓ−1∑
i=s

1
κ + i

,

we have
∂ L(Ξ )
∂ κu
= ln(1− q̃u)× L(Ξ )

+

∑
0≤s≤ℓ≤mu

C̃u(ℓ)× J̃u(s)

×

(
κu + ℓ− 1
ℓ− s

)
(1− q̃u)κu+s(q̃u)ℓ−s

( ℓ−1∑
i=s

1
κu + i

)
.

= ln(1− q̃u)× L(Ξ )+
mu−1∑
i=0

1
κu + i

i∑
s=0

mu∑
ℓ=i+1

C̃u(ℓ)× J̃u(s)

×

(
κu + ℓ− 1
ℓ− s

)
(1− q̃u)κu+s(q̃u)ℓ−s

= ln(1− q̃u)× L(Ξ )

+

mu−1∑
i=0

1
κu + i

(
P
{
ξ̃u > i;Ξ

}
− P

{
η̃u > i;Ξ

})
.

For the empty profile,

∂ L(0)
∂ κu

=
∂

∂ κu

( R∏
v=1

(1− q̃v)κv
)
= L(0)× ln(1− q̃u) □

A.7. Proof of Theorem 12

Proof. Let u0u1 · · · ud−1 denote the path between ud = v and the
oot u0 = R with edges uiui+1 ∈ T . Since pv and qv influence p̃u
nd q̃u at u = v and at all the other ancestors u = ui, but not at
ny other node,

(θv ) =

d∑
i=0

(
Φ (q̃ui )

∂ q̃ui
∂θv
+Φ(p̃ui )

∂ p̃ui
∂θv

)
.

ecall the definitions q̃v = qv 1−ϵv
1−qvϵv

and p̃v = pv (1−ϵv )+ϵv (1−qv )
1−qvϵv

(substituting pR = 0 at the root). We have thus
∂ p̃v
=

1− ϵv ∂ q̃v
= 0
∂pv 1− qvϵv ∂pv
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A
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C

C

∂ p̃v
∂qv
=
−(1− pv)ϵv(1− ϵv)

(1− qvϵv)2
∂ q̃v
∂qv
=

1− ϵv
(1− qvϵv)2

∂ p̃v
∂ϵv
=

(1− pv)(1− qv)
(1− qvϵv)2

∂ q̃v
∂ϵv
=
−qv(1− qv)
(1− qvϵv)2

.

(i) If v = R is the root, then

Φ (qR) = Φ(p̃R)
∂ p̃R
∂qR
+Φ (q̃R)

∂ q̃R
∂qR

= −Φ(p̃R)
ϵR(1− ϵR)
(1− qRϵR)2

+Φ(q̃R)
1− ϵR

(1− qRϵR)2
,

and, for R > 1,

Φ (ϵR) = Φ(p̃R)
∂ p̃R
∂ϵR
+Φ (q̃R)

∂ q̃R
∂ϵR

= Φ(p̃R)
1− qR

(1− qRϵR)2
−Φ(q̃R)

qR(1− qR)
(1− qRϵR)2

,

as claimed in (23).
(ii) Now suppose that v is not the root. At any ancestor ui with

i < d, the distribution parameters of v affect the extinction
probability ϵui . For a distribution parameter θv = pv , θv =
qv , or θv = ϵv ,

∂ p̃ui
∂θv
=
∂ p̃ui
∂ϵui

∂ϵui

∂ p̃ui+1

∂ p̃ui+1
∂θv

and
∂ q̃ui
∂θv
=
∂ q̃ui
∂ϵui

∂ϵui

∂ p̃ui+1

∂ p̃ui+1
∂θv

,

with
∂ϵui

∂ p̃ui+1
=

∂

∂ p̃ui+1

∏
uiw∈T

p̃w =
ϵui

p̃ui+1

Let u = ud−1 be the parent of v = ud. Since ∂ q̃v
pv
= 0,

Φ (pv ) =

(
Φ (p̃v )+Φ (ϵu) ∂ϵu

∂ p̃v

)∂ p̃v
∂pv
=

(
Φ(p̃v )+ ϵΦ(ϵu)

) 1− ϵv
1− qvϵv

with ϵ = ϵu
p̃v
=

ϵud−1
p̃ud

. The other two recurrences include

Φ (q̃v ), as well:

Φ (qv ) =

(
Φ (p̃v ) +Φ(ϵu) ∂ϵu

∂ p̃v

)∂ p̃v
∂qv
+Φ(q̃v ) ∂ q̃v

∂qv

=

(
Φ (p̃v ) + ϵΦ (ϵu)

)
−(1− pv)ϵv(1− ϵv)

(1− qvϵv)2

+Φ(q̃v ) 1− ϵv
(1− qvϵv)2

;

Φ (ϵv ) =

(
Φ (p̃v ) + ϵΦ (ϵu)

)∂ p̃v
∂ϵv
+Φ(q̃v ) ∂ q̃v

∂ϵv

=

(
Φ (p̃v ) + ϵΦ (ϵu)

) (1− pv)(1− qv)
(1− qvϵv)2

− Φ(q̃v ) qv(1− qv)
(1− qvϵv)2

,

as shown in (24). □

A.8. No-duplication model

Proof of Theorem 13. Let Cu, Ku denote the likelihoods for the
empty profile:

Cu(n) = P
{
∀v ∈ Lu : ξv = 0

⏐⏐⏐ ξu = n
}

Ku(s) = P
{
∀v ∈ Lu : ξv = 0

⏐⏐⏐ ηu = s
}
.

Let Qu denote the product of e−r̃v across all edges in the subtree
of u: Qu = 1 at a leaf, and at an ancestral node u with children
v,w

Q =
(
Q e−r̃v

)(
Q e−r̃w

)
.
u v w
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We prove that for all nodes u,

Ku(s) = Qu × (ϵu)s × e−r̃u Cu(n) = Qu × (ϵu)n.

With 00
= 1 and 0n

= 0 for n > 0.) In particular, at the root R,
(0) = K̃R(0).
We adjust the induction proof of Theorem 4. At any node u,

ith r = ru, ϵ = ϵu and Q = Qu, by Eq. (25),

u(s) =
∞∑
k=0

e−r
rk

k!
Q ϵs+k = Q ϵse−r

∞∑
k=0

(rϵ)k

k!

= Q ϵse−r(1−ϵ) = Q ϵse−r̃

ith r̃ = r(1− ϵ). The inductive case for Cu is adjusted:

Cu(n) =
∏
uv∈T

(
Qve−r̃v

(
pv + (1− pv)ϵv

)n)
= Qu(ϵu)n. □

roof of Theorem 14. Since p̃u = pu + (1 − pu)ϵu and r̃u =
u(1− ϵu),

∂ p̃u
∂pu
= 1− ϵu

∂ r̃u
∂ru
= 1− ϵu

∂ p̃u
∂ϵu
= 1− pu

∂ r̃u
∂ϵu
= −ru.

The rest of the proof is based on applications of the chain rule as
in the proof of Theorem 12. □

A.9. Proof of Theorem 15

Proof. Let N =
∑

w∈L nw = mR be the sum of copy numbers
across the leaves. At an ancestral node u, the calculations of C̃u(ℓ)
or all 0 ≤ ℓ ≤ mu and of J̃u(s) for all 0 ≤ s ≤ mu take
1+mv)(1+mw) iterations. Calculating K̃ (s) for all 0 ≤ s ≤ mu and
˜u(ℓ) for all 0 ≤ ℓ ≤ mu is done in (1+mu)(2+mu)/2 iterations.
he total running time can be thus bounded asymptotically as(∑R

u=1 m
2
u

)
, or as O(R) = O(L) if N2 < R, the number of nodes.

umming by the height of the nodes h(u),
R

u=1

m2
u =

h−1∑
i=0

∑
u : h(u)=i

(mu)2 =
h−1∑
i=0

∑
u : h(u)=i

(∑
v∈Lu

nv
)2

≤

h−1∑
i=0

( ∑
u : h(u)=i

∑
v∈Lu

nv
)2

≤

h−1∑
i=0

(∑
v∈L

nv
)2
= hN2.

or the last inequality, note that if h(v) = h(w) then their subtrees
o not intersect and Lv ∩ Lw = ∅. □
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