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Bayesian inference

Bayes theorem: P(θ∣D)=
P(D∣θ)P(θ)
P(D)

We are interested in the posterior probability of the parameter 
values: we want to find the most probable parameter values 
given the data.
Therefore we need to get the distribution for P(θ|D)θ|D)D).

→ Smart sampling using Markov Chain Monte Carlo (θ|D)MCMC) 



  

Smart sampling: MCMC sampling of P(θ|D)θ|D)D)

Aim: Sampling trees and parameter values with a 
frequency equal to their probability.

Idea: do a random sampling whose expectation is 
the target probability distribution. As a result, most 
samples should be in the high probability areas.

This is obtained by a Markov chain whose 
equilibrium value is the target distribution. Methods 
known as               Markov Chain Monte Carlo (MCMC).
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Pr(Accept) = 1
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Pr(Accept) = new height/old height
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MCMC in phylogenetics

● MCMC is an approach for sampling from a probability distribution
● It is often used in the Bayesian setting, where one wants to sample 

from a Posterior probability distribution
● In phylogenetics, one uses it to sample:

– Phylogenetic trees (when we don’t care about dates): 
● topologies 
● branch lengths

– Chronograms (when dates are of interest)
– Rates:

● Rates of exchangeability
● Site-wise rates of evolution
● Birth-death rates
● ...

– Frequencies:
– ACGT equilibrium frequencies
– Root frequencies

– Other parameters...



  

MCMC in phylogenetics
Parameter Prior (example) Move (example)

Topology Uniform... NNI, SPR, TBR...

Branch lengths Exponential, 
Gamma+Dirichlet...

Scaling, Sliding...

Chronogram Birth-Death, 
Coalescent...

SS, FNPR,  
NodeTimeSlide...

Rates of 
exchangeability

Dirichlet... Dirichlet moves...

Site-wise rates of 
evolution

(Discretized) 
Gamma...

Scaling, Sliding...

Birth-death rates Lognormal, 
Exponential...

Scaling, Sliding...

ACGT equilibrium 
frequencies

Dirichlet... Dirichlet moves...

Root frequencies Dirichlet... Dirichlet moves...



  

Sliding move

● New values are picked uniformly in an interval of 
size δ centered on the current value

● Increase δ: bolder moves
● Decrease δ: more modest moves



  

Scaling move

● Like a sliding window, but on the log-transformed 
parameter

● Tuning parameter: λ = 2 ln a 
● Increase λ: bolder moves
● Decrease λ: more modest moves



  

Dirichlet move

● New values are picked from a Dirichlet (or Beta) 
distribution centered on x

● Tuning parameter: α
● Bolder proposals: decrease α
● More modest proposals: increase α



  

Chronogram moves

● Fixed Node height Prune and Regraft (FNPR)

Höhna and Drummond 2012



  

Chronogram moves (2)

● Subtree swap

Höhna and Drummond 2012



  

Chronogram moves (2)

● Subtree swap

Höhna and Drummond 2012

Here the Hastings ratio needs to be computed to 
account for the bias in transition probabilities 
between (θ|D)a) and (θ|D)b)



  

Conclusion
● MCMC is an approach for sampling from a probability distribution
● It is often used in the Bayesian setting, where one wants to 

sample from a Posterior probability distribution
● In phylogenetics, one uses it to sample:

– Phylogenetic trees: topologies and branch lengths
– Divergence times
– Rates
– Other parameters…

● Different moves have been designed for each of these 
parameters

● Some joint moves operate on several parameters at the same 
time

● Efficiency of the MCMC relies heavily on those moves
● Other algorithms like Metropolis Coupled Markov Chain Monte 

Carlo (MC3) have been proposed and can help
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